

Geotechnical and Environmental Exploration

5A and 7A Quench Towers US Steel Clairton Works Clairton, Pennsylvania

GAI Project Number: C071418.13 February 2012

Prepared for: United States Steel Corporation Clairton, Pennsylvania

Prepared by: GAI Consultants, Inc.
Pittsburgh Office
385 East Waterfront Drive
Homestead, Pennsylvania 15120-5005

Table of Contents

1.0	INTRO 1.1 1.2	DDUCTIONSite and Proposed StructuresRegional Geology	
2.0	SUBSI 2.1 2.2 2.3 2.4 2.5 2.6	URFACE EXPLORATION Drilling Equipment and Methods Soils Rock Groundwater and Flooding Slug Testing Site Seismic Coefficients	
3.0	LABOI	RATORY TESTING	2
4.0	SPECI 4.1 4.2	FIC STRUCTURE FOUNDATION RECOMMENDATIONSQuench TowersQuench Station Settling Basins	5
5.0	GENE 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	RAL FOUNDATION RECOMMENDATIONS Augercast Piles Corrosion Mitigation. Temporary Excavations Excavation Dewatering Lateral Earth Pressures Subgrades for Concrete Mats and Floor Slabs Shallow Foundations Drilled Shaft at Wall	6 7 8 8 8 9 9
6.0	DESIG	SN REVIEW	10
	2A-2D 3A-3B	 Summary of Slug Test Results Groundwater Sample Collection Records Soil Laboratory Analytical Data Summary Groundwater Laboratory Analytical Data Summary 	
Figure) 1	- Boring Location Plan	
Apper Apper Apper Apper Apper Apper	ndix B ndix C ndix D ndix E	 Logs of Borings Temporary Monitoring Well Detail Environmental Laboratory Test Results Geotechnical Laboratory Test Results Specifications for Augercast Piles Drilled Shaft Foundation at Wall 	

1.0 INTRODUCTION

This report presents the results of a geotechnical and environmental exploration for the 5A and 7A low emissions quench towers and quench water settling basins to be built at the Clairton Works of United States Steel Corporation (USS) located in Clairton, Pennsylvania (PA). This report presents recommendations for the design of foundations for the proposed facilities. It also includes the results of testing for soil and groundwater characterization to assist in determining how to handle soil and groundwater excavated as a part of the foundation construction. No other environmental considerations are part of the scope of services for this project.

This exploration was requested and authorized by the USS of Pittsburgh, PA.

1.1 Site and Proposed Structures

The site is a level area at about elevation 760 feet [United States Geological Survey (USGS) Datum]. The centerline of the coke batteries has a plant north-south orientation. Quench tower 5A will be built north of existing coke battery 15 and quench tower 7A will be built north of existing coke battery 20. These will be constructed in an area formerly housing coke batteries 16, 17, and 21. The above grade portions of those batteries have been removed, leaving the below grade concrete foundations and possibly other demolition debris.

The attached Figure 1 shows the current plan of the proposed facilities. The quench towers will be about 160 feet high and occupy plan dimensions of about 40 feet by 30 feet. A two story mechanical/electrical building is to be attached to one side at the base of each tower. Preliminary estimates of average loading pressures are 5,000 pounds per square foot (PSF) for the quench towers and 500 PSF for the mechanical/electrical buildings.

The settling basins are to be reinforced concrete tanks occupying plan dimensions of about 50 feet by 215 feet. The basins will each have a concrete mat floor that is at grade on the northern ends and tapers to a depth of about 22 feet below grade near the centers of the structures. From there, the depth remains constant until the southern portions extend to about 29 feet below grade.

1.2 Regional Geology

The fill used to create a level site is underlain by alluvial soils deposited by the Monongahela River. These soils are made up of interbedded sand, gravel, silt and clay and can vary in thickness. The rock under the site is of Pennsylvanian age and part of the Glenshaw Formation of the Conemaugh Group. The Glenshaw Formation is made up of cyclic sequences of sandstone, shale, red beds, and thin limestones and coal.

2.0 SUBSURFACE EXPLORATION

2.1 Drilling Equipment and Methods

Pennsylvania Drilling of Imperial, PA drilled a total of six borings for the proposed facilities between October 31 and November 11, 2011. The approximate locations of the borings are shown on the attached Figure 1 and were established by measuring relative to existing facilities. The elevations of the tops of the borings were estimated based on a general plant grade elevation of 760 feet. GAI Consultants, Inc. (GAI) monitored the drilling and sampling in the field and classified the samples obtained. The field classification sheets are presented in Appendix A.

Borings B-1, B-4 and B-5 were drilled to targeted depths of about 50 feet each to obtain data for foundation design for the settling basins and to obtain data for possible design of excavation bracing systems. Boring B-2 was extended to a depth of only 35 feet because of a one foot thick steel obstruction encountered at a depth of 30 feet. These borings also included the installation of temporary two-inch diameter standpipes to depths of about 30 feet to obtain data on groundwater quality and levels, and to conduct rising head slug tests to provide data to assess dewatering requirements. Temporary monitoring well construction details are shown in Appendix B. Borings B-3 and B-6 were planned to be drilled 10 feet into rock to obtain data for the potential design of deep foundations for the quench towers. This was accomplished at Boring B-3; However, Boring B-6 hit an obstruction at a depth of about 11.5 feet that could not be penetrated. This boring was offset six times to attempt to bypass the obstruction to no avail. When B-6 could not be advanced to rock, the rig was returned to the location of nearby boring B-5. Boring B-5 was then augered to the top of rock, and 10 feet of rock core was obtained to provide data on the rock near the area of boring B-6.

Drilling was accomplished using a Central Mine Equipment (CME) 85 truck-mounted drill rig. Standard penetration tests (ASTM D1586) were conducted with an automatic hammer in conjunction with soil sampling at five-foot intervals through soil. Hollow stem augers were used to maintain an open drill hole between samples and/or to advance the borings between samples. The augers were also used to drill through existing concrete foundations where present at boring locations. A total of three auger bits and six sets of carbide teeth were consumed in drilling through concrete and rubble that were present in some locations. Upon soil sampling or auger refusal on rock, two of the borings were advanced into rock by coring with NQ2 wire line coring tools, which produce rock core approximately two inches in diameter.

During the drilling operations, GAI additionally monitored the breathing zone with a Multi-Rae meter equipped with an oxygen, lower explosive limit (LEL) and volatile organic compound (VOC) sensors to scan for any potential occurrences above background. Safe breathing air conditions were recorded during the work, based on the meter readings. Soil samples were also screened with the Photoionization Detector (PID meter) and the results are indicated in the remarks column on the field classification sheets in Appendix A. The relative concentrations of VOCs were not detected above background.

GAI collected soil samples at depths of six feet and at the groundwater table for chemical analysis for parameters listed under the PA Department of Environmental Protection (PaDEP), Bureau of Waste Management, Management of Fill - Clean Fill Concentration Limits for Organics Clean Fill Concentration Limits for Metals and Inorganics. A sample from B-6 was not obtained at the depth of groundwater because the boring was stopped by the obstruction[s] discussed previously. GAI also obtained samples of groundwater from the temporary monitoring wells for analysis for the parameters specified in the request for proposal by USS. Additionally, GAI used an oil-water interface probe to monitor for the occurrence of separate-phase hydrocarbons in the monitoring wells. No separate-phase hydrocarbons were detected. The purpose of obtaining the soil and water samples was for USS to assess if the soil and groundwater to be removed during the construction of the settling basins would require special provisions for waste management and/or disposal.

The excess soil cuttings and groundwater were placed in containers provided by USS for management and disposal by USS. Upon completion, the borings were backfilled to the ground surface with a water-cement grout. The temporary monitoring wells were grouted through the bottom of well casing to the ground surface. The PVC pipe that comprised the temporary monitoring wells were left in the borehole.

2.2 Soils

The borings encountered two primary soil horizons from the surface to the top of rock: fill and alluvium.

The uppermost fill layer was found in all borings. The fill ranged from 30 to 40 feet in thickness and generally consisted of slag, rock fragments, coke, silt, sand and gravel. Traces of metal, coal, and brick were also found, in addition to the old intact concrete foundations. The density of the fill ranged from very loose to very dense, but most of the fill was dense to very dense.

Natural deposits of alluvial sands, silts and clays were found below the fill. These soils ranged from 10 to 20 feet in thickness (where penetrated) and were very soft to very stiff where cohesive and very loose to dense where granular.

2.3 Rock

As previously noted the near surface rock encountered at the site is part of the Glenshaw Formation. This Formation generally consists of cyclic sequences of sandstone, shale, red beds, limestone and coal with the top of the Formation being identified by the fossiliferous Ames Limestone.

Borings B-1 and B-2 did not encounter rock upon completion. Boring B-3 encountered rock while augering at approximately 53 feet and was confirmed with a sample of soft to medium hard claystone at 54 feet. The boring was cored from 55 to 65 feet. The claystone was gray and gray with red mottling, slightly broken and moderately weathered.

Boring B-4 encountered red decomposed claystone at approximately 49 feet. The boring was terminated at a depth of 50 feet.

Top of rock in boring B-5 occurred at 50.5 feet. The rock was a soft gray highly weathered claystone to 52.3 feet underlain by medium hard, very broken to broken, moderate to slightly weathered siltstone to 60 feet.

2.4 Groundwater and Flooding

Groundwater level observations were made during soil sampling, after the borings were completed, and several hours after completion of the borings in some cases. The observations of soil moisture and measurements of groundwater depth are recorded on the field classification sheets in Appendix A.

The groundwater level measurements in all of the borings (except B-6, which was stopped by an obstruction at a depth of about 10 feet) indicated that the groundwater level is about 16 feet below grade at about elevation 744 feet. Based on GAI's previous site investigation, the normal pool level of the nearby Monongahela River is about elevation 722 feet. The site is above the level of the Monongahela River and groundwater levels may fluctuate with the level of the adjacent Monongahela River.

The water level in B-3 was taken before coring and was measured at 27 feet below grade; however, it is believed that the augers prevented water from entering the hole as the soil samples obtained at higher levels were saturated. Therefore, the water level measurement obtained in B-3 is considered not to reflect the true groundwater level and the saturated soils noted at 16 feet were used to determine the approximate level.

Water level measurements have been made in the borings at the times and under the conditions indicated herein. It should be noted, however, that groundwater conditions will

change due to variations in conditions such as rainfall, temperature, flooding, site grading, or other conditions not evident at the time of this exploration. Those preparing design drawings, specifications, and construction plans should anticipate that such variations will occur.

2.5 Slug Testing

GAI performed rising head slug tests in borings B-1, B-2, B-4 and B-5 to obtain data to estimate the hydraulic conductivity of the soils in the zone that may have to be dewatered during construction of the settling basins. The settling basins are projected to extend to as much as 29 feet below grade, and therefore the temporary monitoring wells were extended about 30 feet below grade to test the primary soils affecting the zone of proposed dewatering. The results of the testing may be used to assist in selecting the appropriate dewatering methods and the pumping rates needed to dewater the excavation.

The tests were conducted by lowering pressure transducers to the bottoms of the wells and then rapidly lowering the water level by removing a known volume of water from the well with bailers. The pressure transducers were connected to a laptop computer to continuously record the pressures fluctuation during and after the removal of water, to measure the rate of recovery of the well to the normal groundwater level. This data was then used to calculate the hydraulic conductivity of the soils involved in the tests.

Approximations of the hydraulic conductivity were conducted by GAI using AQTESOLV Version 4.5 computer software utilizing the Bouwer-Rice methodologies. The results of the slug testing and data analysis are summarized in Table 1. These tests indicate that the granular fills in the areas of both settling basins have hydraulic conductivity ranging from 0.02 to 0.03 centimeters per second (cm/sec) with an overall average of k = 0.02 cm/sec.

2.6 Site Seismic Coefficients

The site seismic class was assessed based on the findings of the three borings that penetrated to rock in the vicinity of the quench towers using the criteria in the 2009 International Building Code. The results indicated that the site class in the area of this project is D, a stiff soil profile. This site class is applicable for shallow or deep foundations for this project. For site class D, the following are the recommended values for seismic design for these structures:

- S₁, is 0.05g, For a one-second period
- Site coefficient, F_v, is 2.4
- S_s, is 0.13g, For a 0.2-second period
- Site coefficient, F_a, is 1.6

3.0 LABORATORY TESTING

GAI performed environmental soil and groundwater sampling during the drilling investigation as requested by USS. GAI obtained a total of 11 samples of soil for chemical analysis for parameters listed under the PaDEP, Bureau of Waste Management, "Management of Fill set forth August 2010 listed on PaDEP Table FP-1a" Clean Fill Concentration Limits for Organics" and Table FP-1b "Clean Fill Concentration Limits for Metals and Inorganics." In addition to comparing the results to the Clean Fill Limits, results were also compared to PaDEP Land Recycling Program (ACT 2), Statewide Health Standards (published January 8, 2011), Medium-Specific Concentrations (MSCs) for Organic and Inorganic Substances in Soil. The MSCs standards used were Nonuse Aquifer, Non-Residential.

GAI also obtained four samples of groundwater from the four temporary monitoring wells MW-1, MW-2, MW-4 and MW-5 for testing for the parameters specified by USS. Sample collection records summarizing field water quality data monitored during sampling are provided in Tables 2A through 2D. GAI properly collected, stored and transported the samples to our subcontracted chemical laboratory, Test America Laboratories, Inc. of Pittsburgh, PA, for the specified testing.

The results of the laboratory testing reports are included in Appendix C. GAI summarized the laboratory data and has presented the information on Table 3A and 3B - Soil Laboratory Data Summary and Table 4 - Groundwater Laboratory Data Summary.

GAI also requested testing for the corrosion potential of the other soil samples from our subcontracted geotechnical laboratory, Geotechnics, of East Pittsburgh, PA. The testing included soil pH, Sulfates, Chlorides, and resistivity. We also requested grain size analyses of the fill for comparison with the results of the slug tests. The results of the testing for the corrosion potential of the soil samples and of the grain size analyses for the fill are included in Appendix D.

GAI did not do any additional laboratory testing for the geotechnical properties of the soils or rock, because the materials encountered during this exploration are similar to those encountered by GAI for previous explorations at the Clairton Works. Thus, our recommendations for geotechnical parameters for use in design of the new facilities are based on previous testing of samples from the Clairton Works.

4.0 SPECIFIC STRUCTURE FOUNDATION RECOMMENDATIONS

4.1 Quench Towers

The quenching towers will be about 160 feet tall and occupy an area about 40 by 30 feet in plan dimensions. A two-story mechanical/electrical building is attached to one side at the base of each tower. Preliminary estimates of average loading pressure are 5,000 PSF for the quench towers and 500 PSF for the mechanical/electrical buildings.

The findings of Borings B-3 and B-5, the closest borings to rock in the vicinities of these towers, were used to estimate the potential settlements of the towers and the adjacent mechanical electrical buildings. Based on the data from these borings, the towers are estimated to settle two to three inches assuming a uniform loading of 5,000 PSF across the projected base area of the towers. The settlements of the towers would be on the order of about one inch if dense fill extended to the top of rock. However, there is a layer of compressible alluvium below the fill that is contributing to the settlement under the anticipated foundation pressures. With the understanding that two to three inches of settlement is considered excessive, it will be necessary to either improve the stiffness of the compressible soils below the structure or to use deep foundations to rock to reduce settlements to tolerable values. Having assessed these options in the past for other structures for the Coke Battery C project, we anticipate that deep foundations to rock offer the best combination of reliability and economy. Thus, deep foundations to rock are recommended to support the quench towers.

The borings for this exploration indicate that the fill is generally dense to very dense and that it is at least 30 feet thick in the areas of the proposed mechanical/electrical buildings. These buildings will attach on one side to the quench towers. To minimize differential settlements between these structures, it is recommended that the mechanical/electrical buildings be supported on the same deep foundation type as used for the quench towers. The lowest floor slab can be a slab on grade.

There are many types of deep foundations that could be used for these structures. The type that has been found cost-effective for many of the facilities for the Coke Battery C project is augered cast-in-place piles, also called augercast piles. Specific recommendations for the design and installation of augercast piles are presented in a later section of this report.

4.2 Quench Station Settling Basins

The settling basins are to be reinforced concrete tanks occupying plan dimensions of about 50 feet by 215 feet and will extend from zero to 29 feet below grade. Since there should be no or little net stress increase due to the weight of these structures, settlements should be negligible on the dense granular fill.

The design of the walls of the structures should be in accordance with the recommendations presented under "Lateral Earth Pressures."

Another consideration for the design and construction of the basins will be the uplift pressures on the base of the structure due to the groundwater level. The basins will have to be designed with sufficient weight or supplemental ground anchors to resist the uplift pressures from the highest possible groundwater levels that may occur when the basins are empty. If ground anchors are needed, consider using augercast piles as ground anchors. Alternately, automatic one-way valves may be included in the structure, if needed, to prevent excessive uplift groundwater pressures. If ground anchors are required, please contact GAI once the approximate load requirements and spacing are known, so that we may provide recommendations for designing the ground anchors.

5.0 GENERAL FOUNDATION RECOMMENDATIONS

The site contains fill to depths of 30 to 40 feet in the project area. The fill is mostly granular slag and appears to be mostly dense to very dense in the project area, although loose areas are also present in the fill. Old foundations, structures, or sewers and old structural debris including steel are present in the fill in the project area. Hard objects that will be difficult to excavate or penetrate, such as the one-foot thickness of steel found at a depth of 30 feet in Boring B-2, may be encountered during foundation construction. Test pits or pre-drilling, either before or during construction, may be needed to determine the exact locations of obstructions and/or existing utilities and their potential impacts on foundation construction.

5.1 Augercast Piles

Augercast piles are suitable for support of the quench towers. Prior to using augercast piles, remove any obstructions and old foundations that would prohibit their installation. Pre-drilling through fill may also be required at the locations of the augercast piles to remove deep obstructions. The augercast piles should be installed to auger refusal (penetration rate less than one foot per minute) at or below the elevation of the top of rock as defined by the borings to achieve full compression and uplift capacity. Where soft rock is present, the auger refusal may occur below the top of rock. Where harder rock is present, the auger refusal may occur at the top of rock.

Augercast piles should be a minimum of 18 inches in diameter and should be designed for an allowable grout strength no higher than 0.33f'c. The minimum pile spacing should be three pile diameters from center to center. Recommended maximum design capacities for suitably reinforced augercast piles installed from above elevation 655 feet to auger refusal in rock are as follows:

Diameter (Inches)	Grout Unconfined Compressive Strength (psi)	Allowable Compressive Load (tons)	Allowable Tension Capacity* (tons)	Allowable Lateral Capacity* (tons)	Allowable Lateral Capacity** (tons)
18	5,000	210	22	4	8

Notes:

- * Augercast piles with a full length central #10 Grade 60 reinforcing bar are estimated to move less than one inch for the indicated loads. The full-length reinforcing steel should be all-thread bars with threaded mechanical couplers designed by the manufacturer to transmit the full strength of the bar. If lateral loads in excess of those indicated for single bar reinforcement will be applied to the piles, consider using batter piles to resist the lateral loads. It is recommended that the batter not exceed 1H:5V.
- ** Alternately include a reinforcing cage installed to a depth of 15 feet designed to resist the lateral loads, in addition to the full length all-thread bar. The minimum reinforcing cage should consist of six #8 Grade 60 reinforcing bars with #4 ties at 12-inch centers to increase the allowable lateral load capacities to those shown in the right column of the table above. GAI should be permitted to review the preliminary pile layouts to determine if reductions in lateral load capacity are needed due to group action.

The load capacities and deflections of augercast piles should be verified by load tests conducted in accordance with ASTM D-1143 for compressive capacity, ASTM D-3689 for tension capacity, and ASTM D-3966 for lateral capacity. Since the above recommended capacities, geometry, and reinforcing have been verified with load tests for the Coke Battery C project, they may be used for the design of the augercast piles for the two new quench towers. If other capacities or geometries are desired for the pile designs for the quench towers, GAI should be informed so that we can determine if additional load testing will be required.

Specifications for augercast piles are included in Appendix E to assist in preparation of the foundation construction specifications for this project.

Augercast piles that contain a single all-thread bar and are not subjected to uplift loads are frequently embedded at least six inches into the reinforced concrete pile cap, and the all-thread bars extend an additional six inches above the tops of the piles. If uplift must be resisted by the piles, the all-thread bar is usually extended high enough into the pile cap to fully develop the capacity of the bar, either with or without a positive shear transfer device (steel plate and/or nut) at the top of the extended all-thread bar. The actual connection detail should be developed by the pile cap designer as required for the project to properly transmit the loads through the cap to the piles.

5.2 Corrosion Mitigation

Type II cement should be used in concrete and grout for shallow and deep foundations to provide resistance to sulfates. Reinforced concrete foundations should have at least three inches of cover over the reinforcing to reduce exposure and corrosion of the reinforcing steel. Epoxy coating should be used on the bars in augercast piles (which are more susceptible to micro-cracking than pile caps and drilled shafts) to enhance the corrosion resistance of the reinforcing steel.

5.3 Temporary Excavations

Temporary excavation slopes should not be steeper than permitted by OSHA. Temporary excavation slopes should not be steeper than 1.5H:1V.

The excavations for the settling basins that extend below the level of groundwater will probably require an excavation bracing system. Potential systems to be considered might include a driven sheet pile wall, a soldier beam and lagging wall, a ground freezing wall, a jet grouted wall, a tangent caisson wall, a tangent augercast pile wall, and possibly others. The selection of the best option for these locations will be a function of the amount of space available around the excavation to allow sloped excavations. Some of these options (such as tangent caissons walls) may serve as or be incorporated into the permanent walls of the basins. The selected method will have to be able to be installed though random obstructions like the steel encountered at a depth of 30 feet in Boring B-2.

GAI anticipates that the desired approach may include the initial removal of the existing foundations and remnants of former structures to a depth of 10 to 15 feet using open excavation techniques. After the primary obstructions have been removed, then a suitable wall system could be installed from the base of the excavation to the depth needed to construct the settling basins.

Since these excavations will extend below the level of ground water, it will be important to determine the appropriate dewatering system in conjunctions with the design of the excavation bracing system. This is so that the bases of the excavations are not destabilized due to ground water seepage, flows or pressures, and to prevent collapse or excessive movement of walls extending below the ground water.

5.4 Excavation Dewatering

The excavations for the settling basins will require dewatering. The type of system will depend upon the finished geometry of the temporary excavation system and the type of excavation support used. The parameters determined from the slug testing may be used to assist in the design the final excavation dewatering system. However, we estimate that a sustained pumping rate of 250 to 1,000 gallons per minute will be required to maintain the groundwater two feet below the base of the excavation, assuming that the lowest base is at elevation 731 feet, that the excavation bracing system does not block seepage below the base of the excavation, and excluding rain water and any surface runoff.

Systems that may be used to dewater these excavations include deep wells, well points, and sumps with pumps. Any of these systems should be designed to lower the water to at least two feet below the base of the excavation to provide a stable dry surface upon which to work and construct the basin foundations. The appropriate type of dewatering system will depend on the type of excavation bracing system selected.

5.5 Lateral Earth Pressures

Retaining walls for the settling basins should be designed for lateral loads based on a soil moist unit weight of 135 pounds per cubic foot (PCF) above the level of groundwater and for a submerged unit weight of 73 PCF below the level of groundwater. The non-yielding walls of the basins should be designed for an "at rest" lateral earth pressure coefficient of 0.5. Backfill around the permanent retaining walls should not be over-compacted to prevent excess lateral earth pressure against the walls. A coefficient of friction of 0.5 may be assigned between the base of concrete foundations and a well compacted granular subgrade. Based on the borings, it is anticipated that granular soils will be present at the bases of the foundations. If

cohesive soils are encountered at the finished subgrade, over-excavate an additional 12 inches and replace the overexcavated soils with free draining, hard, durable aggregate, such as PA Department of Transportation (PennDOT) (Publication 408) Type A crushed limestone having an AASHTO #57 gradation. An active earth pressure coefficient of 0.3 and a passive earth pressure coefficient of 3.0 should be used for design of temporary deflectable walls in the existing site fill. The above recommendations assume that the ground surfaces around the walls are level. Surcharge loads and sloping ground surfaces (if any) must be considered in the design. Any unbalanced water pressure must also be included in the wall design.

If temporary retaining structures extend into the alluvium below the fill, the lateral earth pressures in the alluvium may be evaluated based on a moist unit weight of 125 PCF, a submerged unit weight of 63 PCF, a coefficient of active earth pressure of 0.5, and a coefficient of passive earth pressure of 2.0.

5.6 Subgrades for Concrete Mats and Floor Slabs

The subgrades for mats and floor slabs should be proof rolled with five passes of the 20-ton roller and any soft or loose soils replaced with well compacted granular backfill. The finished subgrades should be compacted to 100 percent of the maximum dry density according to ASTM D698. Subgrades so prepared for these structures and locations in dense fill may be assigned a subgrade modulus of 400 kips per cubic foot for a one-foot square plate. The subgrade modulus must be adjusted as appropriate for the width of the loaded area.

5.7 Shallow Foundations

Shallow foundations are feasible for support of ancillary structures in the immediate vicinity of the primary structures of this project, provided that some settlement is considered tolerable and that the subgrade is improved as recommended herein. Foundations exposed to freezing temperatures should bear a minimum of three feet below finished grade to reduce the probability of damage due to frost heave. Shallow foundations supported on medium dense to very dense granular fill may be sized for a maximum design gross bearing pressure of 2,000 PSF. This design pressure is for the combined effects of dead and frequently applied live loads. The value may be increased by 33 percent for the combined effects of infrequent events. The minimum footing width should be two feet. Footings so designed are estimated to settle about one inch. If two inches of settlement is considered tolerable, then the allowable bearing pressure may be increased to 4,000 PSF. These recommended allowable design pressures are for relatively light facilities and for footings ranging from two to six feet in width.

The subgrades for shallow foundations should be examined and probed to determine if any soft or loose zones are present within one footing width below the base of the foundation. Any soft or loose zones should be removed and replaced with suitable site soils compacted to 100 percent of the maximum dry density according to ASTM D698. If the weather is not conducive to using site soils because they are too wet for compaction, then free draining, hard, durable aggregate, such as PennDOT (Publication 408) Type A crushed limestone having an AASHTO #57 gradation, should be used to backfill below foundations. The #57 backfill should be placed in 12-inch loose lift thicknesses and compacted using vibratory compaction to non movement under the action of the compaction equipment. The bases of all footing excavations should be free of loose or soft material, frozen soil, or water prior to placing concrete.

5.8 Drilled Shaft at Wall

A drilled shaft foundation has been proposed to support a pipe rack that must be built in the area of an existing retaining wall with stringent traffic access requirements. The discussion of the need for and the location of this foundation is presented in Appendix E. GAI recommends that the drilled shaft foundation be a minimum of 18 inches in diameter and have a minimum embedment of six feet below the lowest grade to have sufficient geotechnical capacity to support the proposed loads, with the anticipated movements being small and tolerable. A larger diameter may be used as needed to accommodate the reinforcing cage in the drilled shaft and the anchor bolts.

6.0 DESIGN REVIEW

This report has been prepared to aid in the design of the foundations for this project. Its scope is limited to the specific project and location described herein and represents our understanding of the significant aspects relative to soil and foundation considerations. If there are differences in the locations of the proposed facilities and/or design features from those described herein, GAI should be informed so we may, if necessary, modify or revise our recommendations and determine if additional exploration, testing and analyses are warranted prior to final design of the foundations for the facilities. These recommendations are contingent upon GAI being permitted to review and provide inputs to the foundation construction plans and specifications before they are finalized. GAI should monitor any additional exploration, subgrade preparation, backfilling, foundation construction, and load testing, so that these aspects of the project are constructed according to the intent of our recommendations and so that any unanticipated foundation conditions might be recognized and properly reconciled.

Respectfully submitted, GAI Consultants, Inc.

F. Barry Newman, P.E. Project Manager

Hay Newman

Raymond D. Glenn

Senior Project Geological Specialist

FBN:RDG/jab

07141813-dr-gee-rpt-fbn/jab d-1

TABLES

TABLE 1: Summary of Slug Test Results United States Steel Corporation Clairton Works, Clairton, Pennsylvania Proposed 5A and 7A Quench Towers GAI Project No. C071418.13

Boring	Test #	Test Date	Hydraulic Conductivity, K (feet per day)	Hydraulic Conductivity, K (cm/sec)
	1	11/9/2011	48.22	2.E-02
	2	11/9/2011	53.04	2.E-02
B-1	3	11/9/2011	36.75	1.E-02
	Geon	netric Mean ¹ :	45.47	2.E-02
	Standar	d Deviation ² :	8.37	3.E-03
	1	11/9/2011	Test Invalid ³	
	2	11/9/2011	Test Invalid ³	
B-2	3	11/9/2011	95.4	3.E-02
	Geon	netric Mean ¹ :	95.4	3.E-02
	Standar	d Deviation ² :		
	1	11/9/2011	27.35	1.E-02
	2	11/9/2011	75.97	3.E-02
B-4	3	11/9/2011	114.5	4.E-02
	Geon	netric Mean ¹ :	61.96	2.E-02
	Standar	d Deviation ² :	43.67	2.E-02
	1	11/9/2011	60.08	2.E-02
5.5	2	11/9/2011	63.88	2.E-02
B-5	Geon	netric Mean¹:	61.95	2.E-02
	Standar	d Deviation ² :	2.69	9.E-04
			Overall Average:	2.E-02
			Standard Deviation	1.E-02

Footnotes:

- 1. Geometric Mean provides the averaged values from multiple tests.
- 2. Standard Deviation provides a measure of variation among the tests.
- 3. Test Invalid indicates that slug test results were inconclusive.

Notes:

1. Calculations performed using AQTESOLV Version 4.5 utilizing Bouwer-Rice methodologies.

TABLE 2A : Groundwater Sample Collection Record United State Steel Corporation Clariton Works, Clairton, Pennsylvania

Proposed 5A and 7A Quench Towers GAI Project No. C071418.13

GAI Project:	C071418.13	Site:	U.S. Ste	el-Clairton	Well No.:	B-1	Date:	11/9/2011
Well Depth:	30'	Screen	Length:	20'	Well Diamter:	2"	Casing Type:	PVC
Sampling Devi	ce: Peri	staltic 1	Γubing Size	1/4"	_Water Level:		16.1	15'
Measuring Poi	nt :	Ground S	Surface	Other Informa	ation :		Temporary V	Vell
Sampling Perso	onnel		RDG	_				

Time (min)	рН	Temp (deg C)	Specific Cond (mS·cm-1)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	OPR (mV)	Notes
0	10.58	20.76	1.99	0.00	17.0	-278	
3	10.57	20.82	1.96	0.00	15.9	-282	
6	10.55	20.79	1.94	0.00	14.0	-285	
9	10.54	20.80	1.94	0.00	13.4	-285	
12	10.50	20.03	1.95	0.00	11.7	-279	
15	10.47	19.79	1.94	0.00	11.5	-276	
18	10.49	19.80	1.96	0.00	11.4	-275	
21	10.46	19.79	1.96	0.00	10.9	-278	
		Sa	mple B-1W 11/9/1	11			
					_		

Type of Samples Collected Various

TABLE 2B: Groundwater Sample Collection Record United State Steel Corporation Clariton Works, Clairton, Pennsylvania Proposed 5A and 7A Quench Towers

roposed 5A and 7A Quench Towe GAI Project No. C071418.13

GAI Project: C	071418.13	Site:	U.S. Ste	eel-Clairton	Well No.:	B-2	Date:	11/9/2011	
Well Depth:	30'	Scree	n Length:	20'	Well Diamter:	2"	Casing Type:	PVC	
Sampling Devic	e: Peris	taltic	Tubing Size	1/4"	Water Level:		16.1	.6'	
Measuring Poir	nt :	Ground	Surface	Other Inform	mation :		Temporary V	Vell	
Sampling Perso	nnel		RDG						

Time (min)	рН	Temp (deg C)	Specific Cond (mS·cm-1)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	OPR (mV)	Notes
0	11.13	17.44	0.898	0.00	34.4	-236	
3	11.16	17.62	0.895	0.00	23.7	-248	
6	11.17	17.74	0.892	0.00	18.8	-254	
9	11.20	17.85	0.893	0.00	14.7	-260	
12	11.20	17.93	0.891	0.00	13.1	-262	
15	11.24	17.18	0.894	0.00	10.3	-270	
18	11.26	18.29	0.896	0.00	8.8	-273	
20	11.36	18.50	0.909	0.00	7.4	-281	
25	11.43	18.69	0.925	0.00	6.4	-285	
30	11.43	18.72	0.927	0.00	6.2	-287	
35	11.45	18.74	0.927	0.00	6.3	-290	
		Sa	Sample B-2W 11/9/11				

Type of Samples Collected Various

TABLE 2C : Groundwater Sample Collection Record United State Steel Corporation Clariton Works, Clairton, Pennsylvania Proposed 5A and 7A Quench Towers

GAI Project No. C071418.13

Time (min)	рН	Temp (deg C)	Specific Cond (mS·cm-1)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	OPR (mV)	Notes
0	12.59	19.52	2.57	0.00	10.6	-305	
3	12.65	19.31	2.61	0.00	13.7	-324	
6	12.69	19.28	2.62	0.00	10.7	-345	
9	12.70	19.21	2.63	0.00	10.2	-348	
12	12.70	19.16	2.63	0.00	9.6	-349	
15	12.70	19.11	2.63	0.00	8.8	-349	
18	12.70	18.97	2.63	0.00	8.5	-347	
20	12.70	19.01	2.63	0.00	8.1	-346	
23	12.70	19.02	2.63	0.00	8.3	-343	
26	12.70	19.00	2.63	0.00	8.1	-339	
						-	
		Sa	 mple B-4W 11/8/1	11			

Type of Samples Collected

Various

TABLE 2D : Groundwater Sample Collection Record United State Steel Corporation Clariton Works, Clairton, Pennsylvania Proposed 5A and 7A Quench Towers

Proposed 5A and 7A Quench Towers GAI Project No. C071418.13

GAI Project:	C071418.13	Site:	U.S. Ste	el-Clairton	Well No.:	B-5	Date:	11/8/2011
Well Depth:	30'	Screen	Length:	20'	Well Diamter:	2"	Casing Type:	PVC
Sampling Devi	ice: Peris	taltic Tu	ubing Size	1/4"	Water Level:		16.1	.0'
Measuring Po	int :	Ground Sเ	urface	Other Inforn	nation :		Temporary V	Vell
Sampling Pers	onnel		RDG					

Time (min)	рН	Temp (deg C)	Specific Cond (mS·cm-1)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	OPR (mV)	Notes
0	12.37	19.18	2.69	0.10	5.1	-296	
3	12.53	19.10	2.69	0.00	5.2	-332	
6	12.59	19.10	2.70	0.00	5.0	-367	
9	12.62	19.03	2.71	0.00	5.0	-405	
12	12.62	19.12	2.70	0.00	5.1	-423	
15	12.60	19.04	2.70	0.00	5.1	-434	
18	12.62	19.12	2.70	0.00	5.1	-440	
20	12.62	19.04	2.70	0.00	5.1	-445	
		Sa	mple B-5W 11/8/	11			
İ	1	ĺ	ĺ				

Type of Samples Collected Various

GAI Proje	ect No. CO	71418.13
-----------	------------	----------

Compound	Units	Clean Fill Limit 1						Soil Samples Collec	ted				
Compound	Onits	Clean Fill Limit	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Metals	•	•	•			•	•	•		•			•
Antimony	mg/kg	27	<1.1	<1.1	<1.3	<1.2	0.38 J	<1.1	<1.1	<1.2	<1.1	<1.1	0.89 J
Arsenic	mg/kg	12	1.0 J	5.1	3.6	2.8	5.1	1.4	0.51 J	1.2	4.0	1.8	4.6
Barium	mg/kg	8,200	320 B	220 B	1,500 B	360 B	260 B	220 B	53 B	280 B	290 B	210 B	140 B
Beryllium	mg/kg	320	5.3 B	4.3 B	3.1 B	4.7 B	4.9 B	4.7 B	0.98 B	5.5 B	4.6 B	4.5 B	3.5 B
Boron	mg/kg	6.7	110	81	59	87	86	110	20 J	94	78	88	33
Cadmium	mg/kg	38	<0.55	0.23 J	0.046 J	0.051 J	<0.56	<0.54	<0.56	<0.59	0.10 J	<0.55	0.75
Chromium	mg/kg	94	1.8	5.3	10	4.8	16 B	5.4 B	1.1	2.3	5.8	13	28
Cobalt	mg/kg	8.1	<5.5	1.6 J	0.77 J	0.55 J	1.8 J	<5.4	0.17 J	<5.9	1.7 J	0.29 J	3.0 J
Copper	mg/kg	8,200	1.9 J	3.5	8.5	5.1	13	0.83 J	0.60 J	0.81 J	6.1	15	31
Lead	mg/kg	450	0.25 J	0.80	28	1.2	12	0.61	0.82	<0.36	7.2	0.30 J	140
Manganese	mg/kg	31,000	3,100 B	4,000 B	6,600 B	2,000 B	2,100	2,900	580 B	3,400 B	4,100 B	2,800 B	2,000 B
Mercury	mg/kg	10	<0.035	<0.038	0.018 J	<0.040	0.14	0.013 J	0.014 J	<0.037	0.019 J	<0.036	1.6
Nickel	mg/kg	650	<4.4	2.2 J	4.3 J	1.8 J	9.3	0.68 J	0.49 J	<4.7	3.6 J	4.1J	17
Selenium	mg/kg	26	3.0	1.7	<3.3	1.7	3.4	2.4	0.38 J	1.4	1.1	0.94 J	0.81
Silver	mg/kg	84	<1.1	<1.1	<3.3	<0.58	<0.56	<1.1	<0.56	<1.2	<1.1	<1.1	<0.56
Thallium	mg/kg	14	<2.2	<2.2	<6.6	<1.2	<1.1	<2.2	0.27 J	<2.4	<2.1	<2.2	<1.1
Tin	mg/kg	240	1.0 J	1.3 J	2.8 J	1.2 J	1.9 J	0.87 J	<11	1.2 J	2.0 J	1.9 J	2.3 J
Vanadium	mg/kg	1,500	2.8 J	13	6.8	5.6 J	7.5	11	1.9 J	5.7 J	10	5.8	11
Zinc	mg/kg	12,000	1.6 J,B	1.8 J,B	17 B	6.7 B	57 B	2.2 B	2.7 B	0.90 J,B	19 B	5.4 B	130 B
Polychlorinated Biphenyls (PCBs)													
Aroclor-1016	mg/kg	15	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	< 0.019	<0.018	< 0.019
Aroclor-1221	mg/kg	0.63	< 0.019	<0.019	<0.022	<0.020	<0.020	< 0.019	<0.020	<0.020	< 0.019	<0.018	< 0.019
Aroclor-1232	mg/kg	0.50	< 0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	< 0.019
Aroclor-1242	mg/kg	16	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	< 0.019	<0.018	< 0.019
Aroclor-1248	mg/kg	9.90	< 0.019	<0.019	<0.022	<0.020	<0.020	< 0.019	<0.020	<0.020	< 0.019	<0.018	< 0.019
Aroclor-1254	mg/kg	4.40	< 0.019	<0.019	<0.022	<0.020	<0.020	<0.019	0.039	<0.020	< 0.019	<0.018	0.035
Aroclor-1260	mg/kg	30	<0.019	<0.019	<0.022	<0.020	<0.020	< 0.019	<0.020	<0.020	<0.019	<0.018	<0.019

						GAI Project No. CO							
Commont	11	a 1						Soil Samples Collec	ted				
Compound	Units	Clean Fill Limit 1	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Semi-Volatile Organic Compounds (SVOCs)												•	
1,1'-Biphenyl	mg/kg	790	<0.37	<0.38	<0.44	<0.40	0.11 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.33 J
1,2,4,5-Tetrachlorobenzene	mg/kg	5.1	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
1,2-Diphenylhydrazine(as Azobenzene)	mg/kg	0.15	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
1,4-Dioxane	mg/kg	0.073	<0.76	<0.77	<0.90	<0.80	<0.78	<0.76	<0.78	<0.79	<0.74	<0.73	<1.5
2,2'-oxybis[1-chloropropane]	mg/kg	8.0	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
2,4,5-Trichlorophenol	mg/kg	2,300	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2,4,6-Trichlorophenol	mg/kg	3.1	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2,4-Dichlorophenol	mg/kg	1	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
2,4-Dimethylphenol	mg/kg	32	<0.37	<0.38	<0.44	<0.40	0.090 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.12 J
2,4-Dinitrophenol	mg/kg	0.21	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
2,4-Dinitrotoluene	mg/kg	0.050	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2,6-Dinitrotoluene	mg/kg	1.10	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2-Chloronaphthalene	mg/kg	6,200	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
2-Chlorophenol	mg/kg	4.40	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2-Methylnaphthalene	mg/kg	2,900	0.011 J	0.050 J	0.030 J	0.016 J	0.58	0.032 J	0.017 J	0.062 J	0.013 J	0.029 J	1.4
2-Methylphenol	mg/kg	64	<0.37	<0.38	<0.44	<0.40	0.073 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.13 J
2-Nitroaniline	mg/kg	0.038	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
2-Nitrophenol	mg/kg	5.90	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
3,3'-Dichlorobenzidine	mg/kg	8.3	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
3,3'-Dimethylbenzidine	mg/kg	0.4	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
3-Nitroaniline	mg/kg	0.033	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4,6-Dinitro-2-methylphenol	mg/kg		<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4-Bromophenyl phenyl ether	mg/kg		<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chloro-3-methylphenol	mg/kg	37	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chloroaniline	mg/kg	19.00	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chlorophenyl phenyl ether	mg/kg		<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Nitroaniline	mg/kg	0.031	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4-Nitrophenol	mg/kg	4.1	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8

						GAI Project No. CO							
Compound	Units	Cloop Fill Limit 1						Soil Samples Collec	ted				
Compound	Offics	Clean Fill Limit ¹	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
SVOCs Continued							_						
Acenaphthene	mg/kg	2,700	0.011 J	<0.077	0.035 J	<0.080	0.34	0.024 J	<0.078	0.026 J	<0.074	<0.073	2.0
Acenaphthylene	mg/kg	2,500	<0.076	<0.077	<0.09	<0.08	0.21	<0.076	<0.078	<0.079	<0.074	<0.073	1.2
Acetophenone	mg/kg	200	<0.37	<0.38	<0.44	0.057 J	0.037 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.064 J
Aniline	mg/kg	0.16	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	< 0.36	<0.74
Anthracene	mg/kg	350	0.020 J	<0.077	0.087 J	<0.080	0.87	0.054 J	0.012 J	0.026 J	0.011 J	<0.073	4.9
Atrazine	mg/kg	0.13	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Benzaldehyde	mg/kg		<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Benzidine	mg/kg	0.078	<7.6	<7.7	<9.0	<8.0	<7.8	<7.6	<7.8	<7.9	<7.4	<7.3	<15
Benzo[a]anthracene	mg/kg	25	0.046 J	0.011	0.35	<0.080	3.9	0.28	0.055 J	0.025 J	0.084	< 0.073	14
Benzo[a]pyrene	mg/kg	2.5	0.039 J	<0.077	0.26	<0.080	6.8	0.43	0.081	0.022 J	0.10	< 0.073	12
Benzo[b]fluoranthene	mg/kg	25	0.057 J	<0.077	0.48	<0.080	6.7	0.43	0.097	0.023 J	0.15	<0.073	14
Benzo[g,h,i]perylene	mg/kg	180	0.022 J	<0.077	0.17	<0.080	6.4	0.25	0.070 J	0.017 J	0.095	<0.073	8.5
Benzo[k]fluoranthene	mg/kg	250	<0.076	<0.077	<0.090	<0.080	2.8	0.24	0.049 J	0.022 J	0.065 J	<0.073	5.2
Benzoic acid	mg/kg	2,900	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
Benzyl alcohol	mg/kg	400	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Bis(2-chloroethoxy)methane	mg/kg		<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Bis(2-chloroethyl)ether	mg/kg	0.0039	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
Bis(2-ethylhexyl) phthalate	mg/kg	130	<0.76	<0.77	<0.90	0.076 J	0.10 J	<0.76	<0.78	<0.79	0.072 J	0.087 J	0.25 J
Butyl benzyl phthalate	mg/kg	10,000	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Caprolactam	mg/kg		<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
Carbazole	mg/kg	21	0.014 J	<0.077	0.035 J	<0.080	0.48	0.034 J	0.0095 J	<0.079	0.0070 J	<0.073	2.5
Chrysene	mg/kg	230	0.033 J	<0.077	0.28	<0.080	4.7	0.33	0.064 J	0.030 J	0.11	<0.073	12
Dibenzo(a,h)anthracene	mg/kg	2.50	<0.076	<0.077	0.034 J	<0.080	2.2	0.078	0.014 J	<0.079	0.041 J	<0.073	2.4
Diethyl phthalate	mg/kg	160	<0.37	<0.38	<0.44	0.12 J	<0.38	<0.37	<0.38	<0.39	<0.37	0.045 J	<0.74
Dimethyl phthalate	mg/kg		<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Di-n-butyl phthalate	mg/kg	1,500	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Di-n-octyl phthalate	mg/kg	4,400	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Fluoranthene	mg/kg	3,200	0.070 J	0.015 J	0.55	0.010 J	4.7	0.34	0.086	0.084	0.10	0.0087 J	18
Fluorene	mg/kg	3,000	0.070 J	<0.0133	0.019 J	<0.080	0.28	0.022 J	0.012 J	0.071 J	<0.074	<0.073	2.2
Hexachlorobenzene		0.96	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
	mg/kg												
Hexachlorobutadiene	mg/kg	1.20	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
Hexachlorocyclopentadiene	mg/kg	91	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Hexachloroethane Indeno[1,2,3-cd]pyrene	mg/kg	0.560 25	<0.37 0.019 J	<0.38 <0.077	<0.44	<0.40 <0.080	<0.38	<0.37	<0.38	<0.39 0.013 J	<0.37	<0.36 <0.073	<0.74
	mg/kg	.			0.15		5.0	0.20	0.057 J		0.091		7.3
Isophorone Mathylphonol 2.8.4 (m. crosol)	mg/kg	1.90	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Methylphenol, 3 & 4 (m-cresol)	mg/kg	36	<0.37	<0.38	<0.44	<0.40	0.19 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.27 J
Naphthalene	mg/kg	25	0.021 J	0.075 J	0.046 J	0.15	0.60	0.053 J	0.033 J	0.028 J	0.024 J	0.17	2.1
Nitrobenzene	mg/kg	0.79	<0.76	<0.77	<0.90	<0.80	<0.78	<0.76	<0.78	<0.79	<0.74	<0.73	<1.5
N-Nitrosodi-n-propylamine	mg/kg	0.0013	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
N-Nitrosodiphenylamine	mg/kg	20.00	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
o-Toluidine	mg/kg	0.32	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Pentachlorophenol	mg/kg	5.00	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Phenanthrene	mg/kg	10,000	0.097	0.027 J	0.42	0.013 J	2.9	0.19	0.081	0.18	0.062 J	0.016 J	16
Phenol	mg/kg	66.00	<0.076	<0.077	<0.090	<0.080	0.080	0.034 J	<0.078	<0.079	<0.074	<0.073	0.17
Pyrene	mg/kg	2,200	0.072 J	0.011 J	0.50	0.012 J	4.8	0.31	0.071 J	0.055 J	0.10	0.0079 J	17

						GAI Project No. CO7	71418.13						
Commonad	Units	ol						Soil Samples Collec	ted				
Compound	Units	Clean Fill Limit 1	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
VOCs													
1,1,1-Trichloroethane	mg/kg	7.20	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1,2,2-Tetrachloroethane	mg/kg	0.0093	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	26,000	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1,2-Trichloroethane	mg/kg	0.15	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1-Dichloroethane	mg/kg	0.65	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1-Dichloroethene	mg/kg	0.19	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2,3-Trichloropropane	mg/kg	1.6	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2,4-Trichlorobenzene	mg/kg	27	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2,4-Trimethylbenzene	mg/kg	9	<0.0054	<0.0061	<0.0045	0.014	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dibromo-3-Chloropropane	mg/kg	0.0092	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dibromoethane (EDB)	mg/kg	0.0012	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichlorobenzene	mg/kg	59	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichloroethane	mg/kg	0.10	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichloropropane	mg/kg	0.11	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,3,5-Trimethylbenzene	mg/kg	2.8	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,3-Dichlorobenzene	mg/kg	61	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,4-Dichlorobenzene	mg/kg	10	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
2-Butanone (MEK)	mg/kg	54	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
2-Hexanone	mg/kg		<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
4-Methyl-2-pentanone (MIBK)	mg/kg	2.9	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056

					110	GAI Project No. CO							
Commound	Units	Class Fill Limit 1				<u>.</u>		Soil Samples Collec	ted				
Compound	Onits	Clean Fill Limit 1	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
VOCs Continued	//	T	0.00761	1 0004	0.040		1 0.004	0.040	0.000	I 0.004		0.000	1 0000
Acetone	mg/kg	41	0.0076 J	<0.024	<0.018	0.011 J	<0.024	<0.018	<0.026	<0.021	<0.022	<0.020	<0.023
Acetonitrile	mg/kg	1.9	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Acrolein	mg/kg	0.00062	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Acrylonitrile	mg/kg	0.0087	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Benzene	mg/kg	0.13	<0.0054	<0.0061	<0.0045	0.0015 J	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromochloromethane	mg/kg	1.6	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromodichloromethane	mg/kg	3.40	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromoform	mg/kg	4.4	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromomethane	mg/kg	0.54	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Carbon disulfide	mg/kg	160	0.0088	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Carbon tetrachloride	mg/kg	0.26	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chlorobenzene	mg/kg	6.1	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloroethane	mg/kg	5.00	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloroform	mg/kg	2.5	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloromethane	mg/kg	0.038	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
cis-1,2-Dichloroethene	mg/kg	1.6	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
cis-1,3-Dichloropropene	mg/kg	0.12	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	< 0.0054	<0.0050	<0.0056
Cyclohexane	mg/kg		<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Dibromochloromethane	mg/kg	3.20	<0.0054	<0.0061	<0.0045	< 0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Dichlorodifluoromethane	mg/kg	100	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Ethyl methacrylate	mg/kg	14	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Ethylbenzene	mg/kg	46	< 0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Hexachlorobutadiene	mg/kg	1.20	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Hexane	mg/kg	500	< 0.0054	0.0055 J	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	1.5 J	<0.0054	<0.0050	<0.0056
Isobutyl alcohol	mg/kg	76	<0.22	<0.24	<0.18	<0.31	<0.24	<0.18	<0.26	<0.21	<0.22	<0.20	<0.23
Isopropylbenzene	mg/kg	780	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methacrylonitrile	mg/kg	0.031	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methyl acetate	mg/kg	690	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methyl methacrylate	mg/kg	26.0	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methyl tert-butyl ether	mg/kg	0.28	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methylcyclohexane	mg/kg		<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methylene Chloride	mg/kg	0.076	0.0024 J,B	0.0038 J,B	0.00097 J,B	0.0045 J,B	0.0043 J,B	0.0027 J,B	0.0019 J,B	0.0018 J,B	0.0068 B	0.0066 B	0.0028 J,B
Naphthalene	mg/kg	25	0.019 B	0.0015 J,B	0.0011 J,B	0.12 B	<0.0060	<0.0046	<0.0064	0.0039 J,B	<0.0054	<0.0050	0.0098 B
n-Butylbenzene	mg/kg	950	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
N-Propylbenzene	mg/kg	290	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
sec-Butylbenzene	mg/kg	350	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Styrene	mg/kg	24	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
tert-Butylbenzene	mg/kg	270	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Tetrachloroethene	mg/kg	0.43	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	0.0010 J	<0.0054	<0.0050	<0.0056
Toluene	mg/kg	44	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
trans-1,2-Dichloroethene	mg/kg	2.3	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
trans-1,3-Dichloropropene	mg/kg	0.12	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Trichloroethene		0.12	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Trichlorofluoromethane	mg/kg			<0.0061	<0.0045		<0.0060				<0.0054	<0.0050	
	mg/kg	87	<0.0054			<0.0078		<0.0046	<0.0064	<0.0052			<0.0056
Vinyl acetate	mg/kg	6.50	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Vinyl chloride	mg/kg	0.03	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Xylenes, Total	mg/kg	990	<0.016	<0.018	<0.013	<0.023	<0.018	<0.014	<0.019	<0.016	<0.016	<0.015	<0.017

Commonad	l luite	61 FILL: 1						Soil Samples Collec	ted				
Compound	Units	Clean Fill Limit 1	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3 (16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Pesticides													
4,4'-DDD	mg/kg	6.8	<0.0019	<0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	< 0.0019	<0.0095
4,4'-DDE	mg/kg	41	<0.0019	< 0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	< 0.0019	< 0.0019	<0.0095
4,4'-DDT	mg/kg	53	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	0.00080 J,p	<0.0095
Aldrin	mg/kg	0.10	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
alpha-BHC	mg/kg	0.046	<0.0019	<0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
beta-BHC	mg/kg	0.22	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Chlordane (technical)	mg/kg	49	<0.019	<0.019	<0.023	<0.020	<0.20	<0.019	<0.020	<0.020	<0.019	<0.019	<0.095
delta-BHC	mg/kg	11	<0.0019	0.00053 J,p	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	0.00054 J,p	<0.0019	<0.0019	<0.0095
Diallate	mg/kg	0.15	<0.037	<0.038	<0.044	<0.039	<0.39	<0.037	<0.039	<0.039	<0.037	<0.036	<0.18
Dieldrin	mg/kg	0.11	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan I	mg/kg	110	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan II	mg/kg	130	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan sulfate	mg/kg	70	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endrin	mg/kg	5.5	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
gamma-BHC (Lindane)	mg/kg	0.072	0.00091 J,p	<0.0019	0.00064 J,p	0.00056 J,p	0.031	0.0042	0.0011 J,p	0.0014 J	0.00061 J	<0.0019	0.10
gamma-Chlordane	mg/kg		<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Heptachlor	mg/kg	0.68	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Heptachlor epoxide	mg/kg	1.1	<0.0019	<0.0019	< 0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Methoxychlor	mg/kg	630	<0.0037	<0.0038	<0.0044	<0.0039	0.0092 J,p	0.28	<0.0039	<0.0039	<0.0037	<0.0036	<0.018
Toxaphene	mg/kg	1.20	<0.075	<0.076	<0.089	<0.080	<0.790	<0.076	<0.079	<0.079	<0.074	<0.074	<0.38
Herbicides													
2,4-D	mg/kg	1.8	<0.090	<0.092	<0.11	<0.097	<0.094	<0.090	<0.093	<0.094	<0.089	<0.088	<0.090
2,4,5-T	mg/kg	1.50	<0.023	<0.023	<0.027	<0.024	<0.023	<0.023	<0.023	<0.024	<0.022	<0.022	<0.023
Silvex (2,4,5-TP)	mg/kg	22	<0.023	<0.023	<0.027	<0.024	<0.023	<0.023	<0.023	<0.024	<0.022	<0.022	<0.023
General Chemistry													
Chloride	mg/kg		21 B	42 B	72 B	24 B	30 B	74 B	61 B	71 B	51 B	230 B	61 B
Cr (III)	mg/kg	190,000	1.8	5.3	10	4.8	16	5.4	1.1	2.3	5.8	13	26
Cr (VI)	mg/kg	94	<0.45	<0.46	0.14 J	<0.48	<0.47	<0.46	<0.46	<0.47	<0.44	<0.43	1.9
Cyanide, Total	mg/kg	200	0.23 J	20	29	2.2	5.4	4.9	4.2	4.1	6.8	5.9	4.6
Cyanide, Weak Acid Dissociable	mg/kg		<0.59	1.5	<0.67	<0.61	0.83	0.24 J	<0.60	0.20 J	0.23 J	0.35 J	0.41 J
Nitrate as N	mg/kg		1.8	0.98	4.0	0.73	25	8.3	0.79 J	0.45 J	0.73	<0.49	5.9
Nitrite as N	mg/kg		1.1	0.59	1.6	0.46 J	<0.49	0.23 J	<1.2	<0.51	<0.50	<0.49	0.56
Sulfate	mg/kg		180 B	5400 B	110 B	2200 B	980 B	380 B	6900 B	3800 B	1900 B	1900 B	170 B

Footnotes:

¹Pennsylvania Department of Environmental Protection, Bureau of Waste Management, "Management of Fill", August 7, 2010. Table FP-1a Clean Fill Concentration Limits for Organics and Table FP-1b Clean Fill Concentration Limits for Metals and Inorganics.

Notes:

mg/kg - milligrams per kilogram

- B Compound was found in the blank and sample
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value
- p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported
- < Less than the reporting limit, non-detection

Italicized result have reporting limits above the standard set in Footnote 1

Exceeds standards noted in Footnote 1

		Direct Contact	Soil to GW	Soil to GW	Lowest Applicable						Soil Samples Collect	ted				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	ACT 2 Standard ⁴	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Metals			ł				 			<u> </u>	 		 		<u> </u>	
Antimony	mg/kg	190,000	600	27,000	600	<1.1	<1.1	<1.3	<1.2	0.38 J	<1.1	<1.1	<1.2	<1.1	<1.1	0.89 J
Arsenic	mg/kg	190,000	1,000	29,000	1,000	1.0 J	5.1	3.6	2.8	5.1	1.4	0.51 J	1.2	4.0	1.8	4.6
Barium	mg/kg	190,000	190,000	190,000	190,000	320 B	220 B	1,500 B	360 B	260 B	220 B	53 B	280 B	290 B	210 B	140 B
Beryllium	mg/kg	190,000	400	190,000	400	5.3 B	4.3 B	3.1 B	4.7 B	4.9 B	4.7 B	0.98 B	5.5 B	4.6 B	4.5 B	3.5 B
Boron	mg/kg	190,000	190,000	190,000	190,000	110	81	59	87	86	110	20 J	94	78	88	33
Cadmium	mg/kg	190,000	500	38,000	500	<0.55	0.23 J	0.046 J	0.051 J	<0.56	<0.54	<0.56	<0.59	0.10 J	<0.55	0.75
Chromium	mg/kg	20,000	10,000	190,000	10,000	1.8	5.3	10	4.8	16 B	5.4 B	1.1	2.3	5.8	13	28
Cobalt	mg/kg	190,000	3,100	140,000	3,100	<5.5	1.6 J	0.77 J	0.55 J	1.8 J	<5.4	0.17 J	<5.9	1.7 J	0.29 J	3.0 J
Copper	mg/kg	190,000	100,000	190,000	100,000	1.9 J	3.5	8.5	5.1	13	0.83 J	0.60 J	0.81 J	6.1	15	31
Lead	mg/kg	190,000	500	190,000	500	0.25 J	0.80	28	1.2	12	0.61	0.82	<0.36	7.2	0.30 J	140
Manganese	mg/kg	190,000	30,000	190,000	30,000	3,100 B	4,000 B	6,600 B	2,000 B	2,100	2,900	580 B	3,400 B	4,100 B	2,800 B	2,000 B
Mercury	mg/kg	190,000	200	10,000	200	<0.035	<0.038	0.018 J	<0.040	0.14	0.013 J	0.014 J	<0.037	0.019 J	<0.036	1.6
Nickel	mg/kg	190,000	10,000	190,000	10,000	<4.4	2.2 J	4.3 J	1.8 J	9.3	0.68 J	0.49 J	<4.7	3.6 J	4.1J	17
Selenium	mg/kg	190,000	5,000	26,000	5,000	3.0	1.7	<3.3	1.7	3.4	2.4	0.38 J	1.4	1.1	0.94 J	0.81
Silver	mg/kg	190,000	10,000	84,000	10,000	<1.1	<1.1	<3.3	<0.58	<0.56	<1.1	<0.56	<1.2	<1.1	<1.1	<0.56
Thallium	mg/kg	190,000	200	14,000	200	<2.2	<2.2	<6.6	<1.2	<1.1	<2.2	0.27 J	<2.4	<2.1	<2.2	<1.1
Tin	mg/kg	190,000	190,000	190,000	190,000	1.0 J	1.3 J	2.8 J	1.2 J	1.9 J	0.87 J	<11	1.2 J	2.0 J	1.9 J	2.3 J
Vanadium	mg/kg	190,000	72,000	190,000	72,000	2.8 J	13	6.8	5.6 J	7.5	11	1.9 J	5.7 J	10	5.8	11
Zinc	mg/kg	190,000	190,000	190,000	190,000	1.6 J,B	1.8 J,B	17 B	6.7 B	57 B	2.2 B	2.7 B	0.90 J,B	19 B	5.4 B	130 B
Polychlorinated Biphenyls (PCBs)																
Aroclor-1016	mg/kg	10,000	0.72	200	0.72	< 0.019	< 0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019
Aroclor-1221	mg/kg	10,000	0.13	0.63	0.13	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019
Aroclor-1232	mg/kg	10,000	0.13	0.5	0.13	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019
Aroclor-1242	mg/kg	10,000	0.13	16	0.13	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019
Aroclor-1248	mg/kg	10,000	0.13	62	0.13	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019
Aroclor-1254	mg/kg	10,000	0.13	260	0.13	<0.019	<0.019	<0.022	<0.020	<0.020	<0.019	0.039	<0.020	<0.019	<0.018	0.035
Aroclor-1260	mg/kg	190,000	0.13	590	0.13	< 0.019	<0.019	<0.022	<0.020	<0.020	<0.019	<0.020	<0.020	<0.019	<0.018	<0.019

		Direct Contact	Soil to GW	Soil to GW	Lowest Applicable						Soil Samples Collect	ed				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	ACT 2 Standard ⁴	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Semi-Volatile Organic Compounds (SVOCs)	1				ACT 2 Standard	5 1(6 /11/ 5/ 11	5 1(15 /11/5/11	5 2(0 /11/2/11	5 2(10 /11/2/11	2 3(0 /11/10/11	3 3(10 /11/10/11	2 .(0/11///11	3 .(10 /11/ ./ 11	2 3(0 /11/ 1/11	3 3(10 /11/ ./11	2 3(8 /11/8/11
1,1'-Biphenyl	mg/kg	190,000	720	3,100	720	<0.37	<0.38	<0.44	<0.40	0.11 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.33 J
1,2,4,5-Tetrachlorobenzene	mg/kg	190,000	58	270	58	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
1,2-Diphenylhydrazine(as Azobenzene)	mg/kg	190,000	25	44	25	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
1,4-Dioxane	mg/kg	330	32	4.2	4.2	<0.76	<0.77	<0.90	<0.80	<0.78	<0.76	<0.78	<0.79	<0.74	<0.73	<1.5
2,2'-oxybis[1-chloropropane]	mg/kg	250	3,000	800	250	< 0.076	< 0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	< 0.073	<0.15
2,4,5-Trichlorophenol	mg/kg	190,000	100,000	190,000	100,000	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2,4,6-Trichlorophenol	mg/kg	190,000	10,000	29,000	10,000	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
2,4-Dichlorophenol	mg/kg	190,000	2,000	1,000	1,000	< 0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	< 0.073	<0.15
2,4-Dimethylphenol	mg/kg	10,000	10,000	10,000	10,000	< 0.37	<0.38	<0.44	<0.40	0.090 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.12 J
2,4-Dinitrophenol	mg/kg	190,000	20,000	2,300	2,300	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
2,4-Dinitrotoluene	mg/kg	190,000	840	200	200	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	< 0.37	<0.36	<0.74
2,6-Dinitrotoluene	mg/kg	190,000	10,000	3,000	3,000	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	< 0.37	<0.36	<0.74
2-Chloronaphthalene	mg/kg	190,000	820	18,000	820	< 0.076	< 0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	< 0.073	<0.15
2-Chlorophenol	mg/kg	10,000	4	4.4	4	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	< 0.39	<0.37	< 0.36	<0.74
2-Methylnaphthalene	mg/kg	190,000	41	1,600	41	0.011 J	0.050 J	0.030 J	0.016 J	0.58	0.032 J	0.017 J	0.062 J	0.013 J	0.029 J	1.4
2-Methylphenol	mg/kg	190,000	51,000	8,500	8,500	< 0.37	<0.38	<0.44	<0.40	0.073 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.13 J
2-Nitroaniline	mg/kg	190,000	31	5.5	5.5	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
2-Nitrophenol	mg/kg	190,000	82,000	17,000	17,000	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	< 0.39	<0.37	< 0.36	<0.74
3,3'-Dichlorobenzidine	mg/kg	190,000	310	17,000	310	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	< 0.39	<0.37	< 0.36	<0.74
3,3'-Dimethylbenzidine	mg/kg	190,000	24	1,300	24	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
3-Nitroaniline	mg/kg	190,000	3.1	0.48	0.48	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4,6-Dinitro-2-methylphenol	mg/kg	190,000	1,000	750	750	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4-Bromophenyl phenyl ether	mg/kg					< 0.37	<0.38	<0.44	<0.40	<0.38	< 0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chloro-3-methylphenol	mg/kg	190,000	51,000	12,000	12,000	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chloroaniline	mk/kg	190,000	1.3	1.6	1.3	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Chlorophenyl phenyl ether	mg/kg					<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
4-Nitroaniline	mg/kg	190,000	13	1.9	1.9	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
4-Nitrophenol	mg/kg	190,000	6,000	4,100	4,100	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8

		Direct Contact	Soil to GW	Soil to GW	Lowest Applicable	1					Soil Samples Collec	ted				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	ACT 2 Standard ⁴	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
SVOCs Continued					7ter 2 Standard	(- //-/	_ = =(== /==/=/=/		(,, _, _,			(0 /==/ . / ==	- (//	(- // -/	(/, -/	
Acenaphthene	mg/kg	190.000	380	4.700	380	0.011 J	<0.077	0.035 J	<0.080	0.34	0.024 J	<0.078	0.026 J	<0.074	<0.073	2.0
Acenaphthylene	mg/kg	190,000	1,600	18,000	1,600	<0.076	<0.077	<0.090	<0.080	0.21	<0.076	<0.078	<0.079	<0.074	<0.073	1.2
Acetophenone	mg/kg	10,000	1,000	540	540	<0.37	<0.38	<0.44	<0.40	0.037 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.064 J
Aniline	mg/kg	91	0.88	0.52	0.52	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Anthracene	mg/kg	190,000	6.6	350	6.6	0.020 J	<0.077	0.087 J	<0.080	0.87	0.054 J	0.012 J	0.026 J	0.011 J	<0.073	4.9
Atrazine	mg/kg	190,000	0.3	0.13	0.13	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Benzaldehyde	mg/kg					<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Benzidine	mg/kg	190,000	1.1	1,500	1.1	<7.6	<7.7	<9.0	<8.0	<7.8	<7.6	<7.8	<7.9	<7.4	<7.3	<15
Benzo[a]anthracene	mg/kg	190,000	1.1	960	1.1	0.046 J	0.011	0.35	<0.080	3.9	0.28	0.055 J	0.025 J	0.084	< 0.073	14
Benzo[a]pyrene	mg/kg	190,000	0.38	860	0.38	0.039 J	<0.077	0.26	<0.080	6.8	0.43	0.081	0.022 J	0.10	< 0.073	12
Benzo[b]fluoranthene	mg/kg	190,000	0.12	170	0.12	0.057 J	<0.077	0.48	<0.080	6.7	0.43	0.097	0.023 J	0.15	<0.073	14
Benzo[g,h,i]perylene	mg/kg	190,000	0.026	180	0.026	0.022 J	<0.077	0.17	<0.080	6.4	0.25	0.070 J	0.017 J	0.095	<0.073	8.5
Benzo[k]fluoranthene	mg/kg	190,000	0.055	610	0.055	<0.076	<0.077	<0.090	<0.080	2.8	0.24	0.049 J	0.022 J	0.065 J	<0.073	5.2
Benzoic acid	mg/kg	190,000	41,000	7,800	7,800	<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
Benzyl alcohol	mg/kg	10,000	5,100	1,800	1,800	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Bis(2-chloroethoxy)methane	mg/kg	10,000	31	8.2	8.2	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Bis(2-chloroethyl)ether	mg/kg	7.7	7.6	2.3	2.3	< 0.076	< 0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	< 0.073	<0.15
Bis(2-ethylhexyl) phthalate	mg/kg	10,000	29	6,300	29	<0.76	<0.77	<0.90	0.076 J	0.10 J	<0.76	<0.78	<0.79	0.072 J	0.087 J	0.25 J
Butyl benzyl phthalate	mg/kg	10,000	270	10,000	270	< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Caprolactam	mg/kg					<1.9	<2.0	<2.3	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9	<3.8
Carbazole	mg/kg	190,000	120	760	120	0.014 J	<0.077	0.035 J	<0.080	0.48	0.034 J	0.0095 J	<0.079	0.0070 J	< 0.073	2.5
Chrysene	mg/kg	190,000	0.19	230	0.19	0.033 J	<0.077	0.28	<0.080	4.7	0.33	0.064 J	0.030 J	0.11	<0.073	12
Dibenzo(a,h)anthracene	mg/kg	190,000	0.06	270	0.06	<0.076	<0.077	0.034 J	<0.080	2.2	0.078	0.014 J	<0.079	0.041 J	<0.073	2.4
Diethyl phthalate	mg/kg	10,000	10,000	10,000	10,000	< 0.37	<0.38	<0.44	0.12 J	<0.38	<0.37	<0.38	<0.39	<0.37	0.045 J	<0.74
Dimethyl phthalate	mg/kg					< 0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Di-n-butyl phthalate	mg/kg	10,000	10,000	10,000	10,000	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Di-n-octyl phthalate	mg/kg	10,000	300	10,000	300	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Fluoranthene	mg/kg	190,000	26	3,200	26	0.070 J	0.015 J	0.55	0.010 J	4.7	0.34	0.086	0.084	0.10	0.0087 J	18
Fluorene	mg/kg	190,000	190	3,800	190	0.013 J	<0.077	0.019 J	<0.080	0.28	0.022 J	0.012 J	0.071 J	<0.074	<0.073	2.2
Hexachlorobenzene	mg/kg	190,000	0.6	5.8	0.6	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
Hexachlorobutadiene	mg/kg	10,000	290	3,400	290	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
Hexachlorocyclopentadiene	mg/kg	10,000	180	3,300	180	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Hexachloroethane	mg/kg	640	10	56	10	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Indeno[1,2,3-cd]pyrene	mg/kg	190,000	6.2	190,000	6.2	0.019 J	<0.077	0.15	<0.080	5.0	0.20	0.057 J	0.013 J	0.091	<0.073	7.3
Isophorone	mg/kg	10,000	10,000	1,900	1,900	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Methylphenol, 3 & 4 (m-cresol)	mg/kg	10,000	10,000	10,000	10,000	<0.37	<0.38	<0.44	<0.40	0.19 J	<0.37	<0.38	<0.39	<0.37	<0.36	0.27 J
Naphthalene	mg/kg	190,000	3,000	7,500	3,000	0.021 J	0.075 J	0.046 J	0.15	0.60	0.053 J	0.033 J	0.028 J	0.024 J	0.17	2.1
Nitrobenzene	mg/kg	10,000	10,000	8,700	8,700	<0.76	<0.77	<0.90	<0.80	<0.78	<0.76	<0.78	<0.79	<0.74	<0.73	<1.5
N-Nitrosodi-n-propylamine	mg/kg	10,000	37	5.1	5.1	<0.076	<0.077	<0.090	<0.080	<0.078	<0.076	<0.078	<0.079	<0.074	<0.073	<0.15
N-Nitrosodiphenylamine	mg/kg	190,000	3,500	5,500	3,500	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
o-Toluidine	mg/kg	10,000	1,400	1,600	1,400	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Pentachlorophenol	mg/kg	190,000	100	5,000	100	<0.37	<0.38	<0.44	<0.40	<0.38	<0.37	<0.38	<0.39	<0.37	<0.36	<0.74
Phenanthrene	mg/kg	190,000	110	10,000	110	0.097	0.027 J	0.42	0.013 J	2.9	0.19	0.081	0.18	0.062 J	0.016 J	16
Phenol	mg/kg	190,000	20,000	3,300	3,300	<0.076	<0.077	<0.090	<0.080	0.080	0.034 J	<0.078	<0.079	<0.074	<0.073	0.17
Pyrene	mg/kg	190,000	13	2,200	13	0.072 J	0.011 J	0.50	0.012 J	4.8	0.31	0.071 J	0.055 J	0.10	0.0079 J	17

_		Direct Contact	Soil to GW	Soil to GW	Lowest Applicable						Soil Samples Collec	ted				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	_	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
VOCs	_				1 1101 = 200112212	. , . ,		, , , , ,	. , , , ,	. , , , ,	, , , , ,	, , , ,	, , , ,		, , , ,	
1,1,1-Trichloroethane	mg/kg	10,000	200	72	72	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1,2,2-Tetrachloroethane	mg/kg	44	43	13	13	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	10,000	10,000	10,000	10,000	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,1,2-Trichloroethane	mg/kg	160	5	1.5	1.5	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1-Dichloroethane	mg/kg	1,600	160	39	39	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,1-Dichloroethene	mg/kg	10,000	7	1.9	1.9	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,2,3-Trichloropropane	mg/kg	460	400	320	320	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,2,4-Trichlorobenzene	mg/kg	10,000	4,400	10,000	4,400	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,2,4-Trimethylbenzene	mg/kg	640	620	3,500	620	< 0.0054	<0.0061	<0.0045	0.014	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,2-Dibromo-3-Chloropropane	mg/kg	0.43	2	0.92	0.43	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
1,2-Dibromoethane (EDB)	mg/kg	4.3	0.5	0.12	0.12	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichlorobenzene	mg/kg	10,000	6,000	5,900	5,900	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichloroethane	mg/kg	98	5	1	1	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,2-Dichloropropane	mg/kg	260	5	1.1	1.1	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	< 0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,3,5-Trimethylbenzene	mg/kg	550	5.3	9.3	5.3	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,3-Dichlorobenzene	mg/kg	10,000	6,000	6,100	6,000	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
1,4-Dichlorobenzene	mg/kg	230	750	1,000	230	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
2-Butanone (MEK)	mg/kg	10,000	10,000	7,600	7,600	< 0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
2-Hexanone	mg/kg	460	4.4	1.1	1.1	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
4-Methyl-2-pentanone (MIBK)	mg/kg	10,000	10,000	10,000	10,000	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056

		Direct Contact	Soil to GW	Soil to GW	Lowest Applicable						Soil Samples Collect	ted				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	ACT 2 Standard ⁴	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
VOCs Continued					7.01 = 0.01.00.0	(= , , , = ,	(- , , -,	(-, , ,	(- / / /		2 (2 / / 2 /	(-, , , ,	(- , , ,	- (- / / / /	-	2(2) / 2/
Acetone	mg/kg	10,000	10,000	10,000	10,000	0.0076 J	<0.024	<0.018	0.011 J	<0.024	<0.018	<0.026	<0.021	<0.022	<0.020	<0.023
Acetonitrile	mg/kg	5,500	530	60	60	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Acrolein	mg/kg	1.8	0.18	0.02	0.02	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Acrylonitrile	mg/kg	38	37	5.1	5.1	<0.11	<0.12	<0.089	<0.16	<0.12	<0.092	<0.13	<0.10	<0.11	<0.099	<0.11
Benzene	mg/kg	330	50	13	13	<0.0054	< 0.0061	<0.0045	0.0015 J	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromochloromethane	mg/kg	10,000	9	1.6	1.6	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromodichloromethane	mg/kg	69	8	2.7	2.7	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromoform	mg/kg	2,300	800	350	350	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Bromomethane	mg/kg	460	100	54	54	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Carbon disulfide	mg/kg	10,000	620	530	530	0.0088	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Carbon tetrachloride	mg/kg	170	5	2.6	2.6	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chlorobenzene	mg/kg	4,600	1,000	610	610	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloroethane	mg/kg	10,000	9,000	1,900	1,900	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloroform	mg/kg	110	80	20	20	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Chloromethane	mg/kg	1,400	300	38	38	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
cis-1,2-Dichloroethene	mg/kg	10,000	70	16	16	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
cis-1,3-Dichloropropene	mg/kg	640	260	46	46	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Cyclohexane	mg/kg	10,000	5,300	6,900	5,300	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Dibromochloromethane	mg/kg	95	800	250	95	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Dichlorodifluoromethane	mg/kg	10,000	10,000	10,000	10,000	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Ethyl methacrylate	mg/kg	10,000	920	150	150	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Ethylbenzene	mg/kg	10,000	7,000	4,600	4,600	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Hexachlorobutadiene	mg/kg	10,000	290	3,400	290	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Hexane	mg/kg	10,000	610	5,600	610	<0.0054	0.0055 J	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	1.5 J	<0.0054	<0.0050	<0.0056
Isobutyl alcohol	mg/kg	10,000	10,000	10,000	10,000	<0.22	<0.24	<0.18	<0.31	<0.24	<0.18	<0.26	<0.21	<0.22	<0.20	<0.23
Isopropylbenzene	mg/kg	10,000	5,000	10,000	5,000	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methacrylonitrile	mg/kg	64	0.62	0.1	0.10	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methyl acetate	mg/kg	10,000	10,000	1,900	1,900	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Methyl methacrylate	mg/kg	10,000	10,000	8,400	8,400	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Methyl tert-butyl ether	mg/kg	3,700	20	2.8	2.8	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Methylcyclohexane	mg/kg					<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
Methylene Chloride	mg/kg	5,400	50	7.6	7.6	0.0024 J,B	0.0038 J,B	0.00097 J,B	0.0045 J,B	0.0043 J,B	0.0027 J,B	0.0019 J,B	0.0018 J,B	0.0068 B	0.0066 B	0.0028 J,B
Naphthalene	mg/kg	190,000	3,000	7,500	3,000	0.019 B	0.0015 J,B	0.0011 J,B	0.12 B	<0.0060	<0.0046	<0.0064	0.0039 J,B	<0.0054	<0.0050	0.0098 B
n-Butylbenzene	mg/kg	10,000	410	2,600	410	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
N-Propylbenzene	mg/kg	10,000	410	780	410	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	< 0.0056
sec-Butylbenzene	mg/kg	10,000	410	960	410	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Styrene	mg/kg	10,000	1,000	2,400	1,000	< 0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
tert-Butylbenzene	mg/kg	10,000	410	740	410	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Tetrachloroethene	mg/kg	4,400	5	4.3	4.3	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	0.0010 J	<0.0054	<0.0050	<0.0056
Toluene	mg/kg	10,000	10,000	4,400	4,400	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
trans-1,2-Dichloroethene	mg/kg	5,500	100	23	23	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	< 0.0054	<0.0050	<0.0056
trans-1,3-Dichloropropene	mg/kg	640	260	46	46	<0.0054	< 0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Trichloroethene	mg/kg	1,500	5	1.7	1.7	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Trichlorofluoromethane	mg/kg	10,000	10,000	8,700	8,700	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Vinyl acetate	mg/kg	10,000	180	21	21	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Vinyl chloride	mg/kg	580	2	0.27	0.27	<0.0054	<0.0061	<0.0045	<0.0078	<0.0060	<0.0046	<0.0064	<0.0052	<0.0054	<0.0050	<0.0056
Xylenes, Total	mg/kg	9,100	10,000	10,000	9,100	< 0.016	<0.018	<0.013	<0.023	<0.018	<0.014	<0.019	<0.016	<0.016	<0.015	<0.017
· · · ·		. ,	,	. ,											1	

Communication	I I alka	Direct Contact	Soil to GW	Soil to GW	Lowest Applicable						Soil Samples Collec	ted				
Compound	Units	2-15' Values ¹	100x Values ²	Generic Values ³	ACT 2 Standard ⁴	B-1(6')11/3/11	B-1(15')11/3/11	B-2(6')11/2/11	B-2(16')11/2/11	B-3(6')11/10/11	B-3(16')11/10/11	B-4(6')11/7/11	B-4(16')11/7/11	B-5(6')11/4/11	B-5(16')11/4/11	B-6(6')11/8/11
Pesticides			L	L					. , , , ,			. ,			1	1
4,4'-DDD	mg/kg	190,000	16	1,800	16	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
4,4'-DDE	mg/kg	190,000	4	870	4	< 0.0019	<0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
4,4'-DDT	mg/kg	190,000	0.55	330	0.55	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	0.00080 J,p	<0.0095
Aldrin	mg/kg	190,000	2	240	2	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	< 0.0095
alpha-BHC	mg/kg	190,000	41	190	41	<0.0019	<0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	< 0.0095
beta-BHC	mg/kg	190,000	10	59	10	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	<0.0020	<0.0019	<0.0019	< 0.0095
Chlordane (technical)	mg/kg	190,000	5.6	1,400	5.6	< 0.019	< 0.019	<0.023	<0.020	<0.20	<0.019	<0.020	<0.020	<0.019	<0.019	< 0.095
delta-BHC	mg/kg	10,000	5,300	6,900	5,300	<0.0019	0.00053 J,p	<0.0023	<0.0020	<0.020	<0.0019	<0.0020	0.00054 J,p	<0.0019	<0.0019	<0.0095
Diallate	mg/kg	10,000	4,000	2,300	2,300	< 0.037	<0.038	<0.044	<0.039	<0.39	< 0.037	<0.039	< 0.039	<0.037	<0.036	<0.18
Dieldrin	mg/kg	10,000	16	440	16	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan I	mg/kg	190,000	50	260	50	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan II	mg/kg	190,000	45	260	45	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endosulfan sulfate	mg/kg	190,000	12	70	12	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Endrin	mg/kg	190,000	0.2	5.5	0.2	<0.0019	<0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	< 0.0095
gamma-BHC (Lindane)	mg/kg	190,000	20	72	20	0.00091 J,p	< 0.0019	0.00064 J,p	0.00056 J,p	0.031	0.0042	0.0011 J,p	0.0014 J	0.00061 J	<0.0019	0.10
gamma-Chlordane	mg/kg					<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Heptachlor	mg/kg	190,000	18	310	18	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Heptachlor epoxide	mg/kg	190,000	20	1,100	20	<0.0019	< 0.0019	<0.0023	<0.0020	<0.020	< 0.0019	<0.0020	<0.0020	<0.0019	<0.0019	<0.0095
Methoxychlor	mg/kg	190,000	4.5	710	4.5	<0.0037	<0.0038	<0.0044	< 0.0039	0.0092 J,p	0.28	<0.0039	< 0.0039	<0.0037	<0.0036	<0.018
Toxaphene	mg/kg	190,000	0.3	1.2	0.3	<0.075	<0.076	<0.089	<0.080	<0.79	<0.076	<0.079	<0.079	<0.074	<0.074	<0.38
Herbicides						•										
2,4-D	mg/kg	190,000	7,000	1,800	1,800	<0.090	<0.092	<0.11	<0.097	<0.094	<0.090	<0.093	<0.094	<0.089	<0.088	<0.090
2,4,5-T	mg/kg	190,000	7,000	1,500	1,500	<0.023	<0.023	<0.027	<0.024	<0.023	<0.023	<0.023	<0.024	<0.022	<0.022	<0.023
Silvex (2,4,5-TP)	mg/kg	190,000	5	22	5	<0.023	<0.023	<0.027	<0.024	<0.023	<0.023	<0.023	<0.024	<0.022	<0.022	<0.023
General Chemistry	-	•	•	•		-	•	•		•	•		-		•	•
Chloride	mg/kg					21 B	42 B	72 B	24 B	30 B	74 B	61 B	71 B	51 B	230 B	61 B
Cr (III)	mg/kg	190,000	10,000	190,000	10,000	1.8	5.3	10	4.8	16	5.4	1.1	2.3	5.8	13	26
Cr (VI)	mg/kg	20,000	10,000	190,000	10,000	<0.45	<0.46	0.14 J	<0.48	<0.47	<0.46	<0.46	<0.47	<0.44	<0.43	1.9
Cyanide, Total	mg/kg	190,000	20,000	190,000	20,000	0.23 J	20	29	2.2	5.4	4.9	4.2	4.1	6.8	5.9	4.6
Cyanide, Weak Acid Dissociable	mg/kg					<0.59	1.5	<0.67	<0.61	0.83	0.24 J	<0.60	0.20 J	0.23 J	0.35 J	0.41 J
Nitrate as N	mg/kg					1.8	0.98	4.0	0.73	25	8.3	0.79 J	0.45 J	0.73	<0.49	5.9
Nitrite as N	mg/kg					1.1	0.59	1.6	0.46 J	<0.49	0.23 J	<1.2	<0.51	<0.50	<0.49	0.56
Sulfate	mg/kg					180 B	5400 B	110 B	2200 B	980 B	380 B	6900 B	3800 B	1900 B	1900 B	170 B

Footnotes:

¹Pennsylvania Department of Environmental Protection, Land Recycling Program (Act 2), Statewide Health Standards (published January 8, 2011), Medium-Specific Concentrations for Organic and Inorganic Substances in Soil-Direct Contact Values- Non-Residential, Subsurface Soil 2-15 feet

Notes:

mg/kg - milligrams per kilogram

B - Compound was found in the blank and sample

- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value
- p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported
- < Less than the reporting limit, non-detection

Italicized result have reporting limits above the standard set in Footnote 4

Exceeds standards noted in Footnote 4

The numbers in the table (soil-to-groundwater) include both the value that is 100 times the appropriate groundwater equation of the soil-to-groundwater equation in the Act 2 regulations allow the choice of which soil-to-groundwater numeric value to use, i.e., the highest of the 100x GW MSC value or the generic value. Therefore, the "Lowest Applicable Act 2 Standard" is a conservative data evaluation criterion when comparing those constituents that were not detected at the reporting limit, and the reporting limit is greater than the Lowest Applicable Act 2 Standard (i.e., italicized values).

²Pennsylvania Department of Environmental Protection, Land Recycling Program (Act 2), Statewide Health Standards (published January 8, 2011), Medium-Specific Concentrations for Organic and Inorganic Substances in Soil-Soil to Groundwater Numeric Values-Nonuse Aquifers, Non-Residential, 100x GW MSC

³Pennsylvania Department of Environmental Protection, Land Recycling Program (Act 2), Statewide Health Standards (published January 8, 2011), Medium-Specific Concentrations for Organic and Inorganic Substances in Soil-Soil to Groundwater Numeric Values- Nonuse Aquifers, Non-Residential, Generic Value ⁴Lowest Applicable Act 2 Standard comparing footnotes 1, 2 and 3 standards

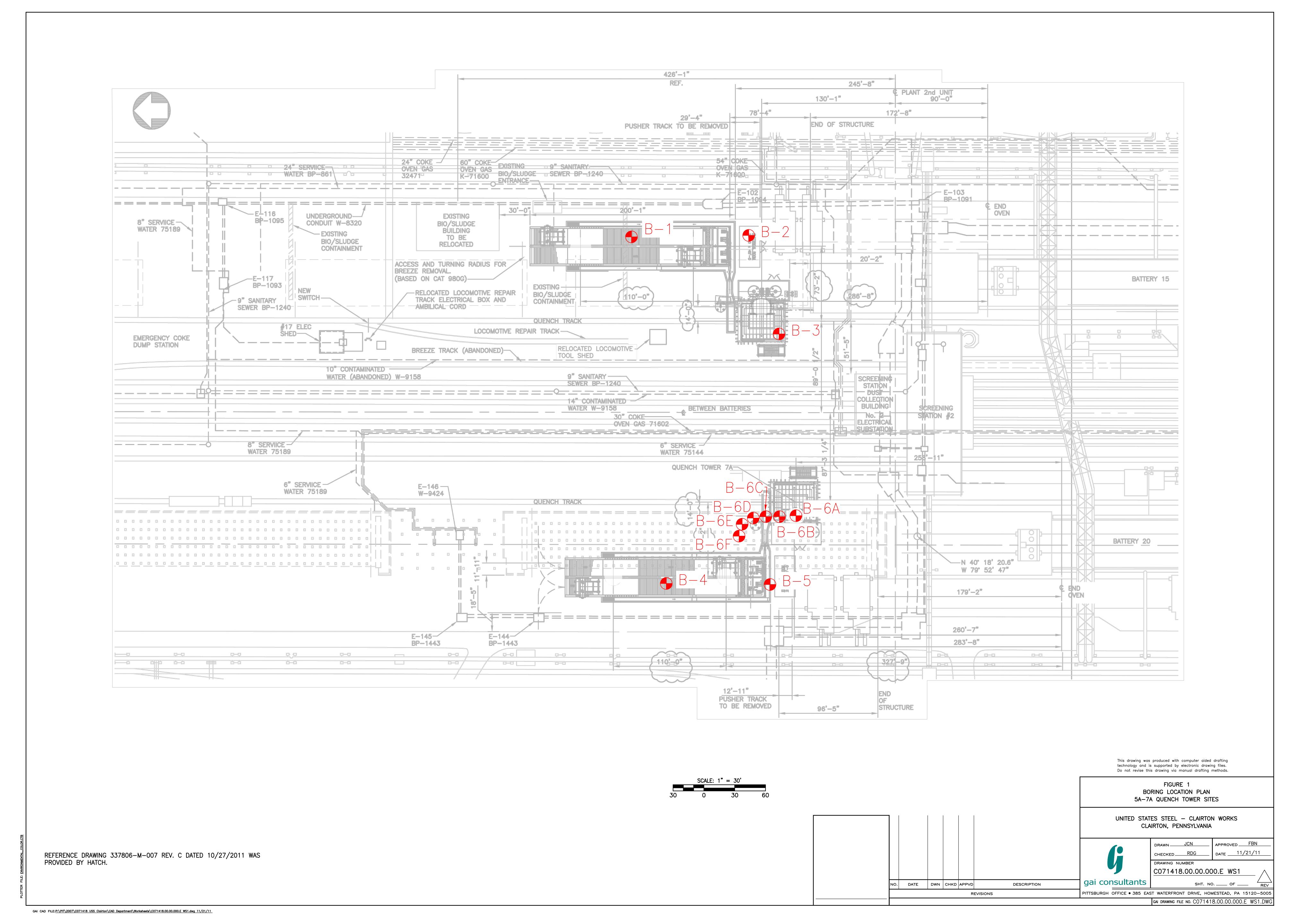
Compound		Water Samples Collected				
	Units	B-1W 11/9/11	B-2W 11/9/11	B-4W 11/8/11	B-5W 11/8/11	
Metals						
Aluminum	ug/l	26 J	140 J	720	500	
Antimony	ug/l	<10	2.3 J	<10	1.8 J	
Arsenic	ug/l	7.1 J	<10	4.7 J	6.1 J	
Barium	ug/l	100 J	51 J	100 J	91 J	
Beryllium	ug/l	0.40 J	0.41 J	<4.0	<4.0	
Boron	ug/l	630	290	58 J	41 J	
Cadmium	ug/l	<5.0	<5.0	<5.0	<5.0	
Calcium	ug/l	200,000	95,000	240,000	240,000	
Chromium	ug/l	1.7 J	<5.0	0.83J	<5.0	
Cobalt	ug/l	<50	<50	<50	<50	
Copper	ug/l	<25	<25	<25	<25	
Iron	ug/l	220	41 J	180	280	
Lead	ug/l	<3.0	<3.0	<3.0	<3.0	
Magnesium	ug/l	2,100 J	650 J	<5,000	<5000	
Manganese	ug/l	28	4.0 J	<15	<15	
Mercury	ug/l	<0.20	<0.20	0.083 J	0.12 J	
Nickel	ug/l	<40	<40	<40	<40	
Potassium	ug/l	16,000	8,000	34,000	36,000	
Selenium	ug/l	28	27	7.4	14	
Silver	ug/l	<5.0	<5.0	<5.0	<5.0	
Sodium		260,000	94,000	170,000	200,000	
Thallium	ug/l	<10	<10	2.4 J	2.5 J	
Vanadium	ug/l	3.1 J	2.0 J	5.2 J	5.0 J	
Zinc	ug/l	-				
	ug/l	5.4 J,B	4.4 J,B	5.6 J,B	5.8 J,B	
Semi-Volatile Organic Compounds (SVOCs	-	101	241	-20	4.5.1	
1,1'-Biphenyl	ug/l	1.8 J	2.1 J	<38	1.5 J	
2,2'-oxybis[1-chloropropane]	ug/l	<0.97	<0.77	<7.7	<4.9	
2,4,5-Trichlorophenol	ug/l	<4.9	<3.8	<38	<25	
2,4,6-Trichlorophenol	ug/l	<4.9	<3.8	<38	<25	
2,4-Dichlorophenol	ug/l	<0.97	<0.77	<7.7	<4.9	
2,4-Dimethylphenol	ug/l	<4.9	<3.8	6.8 J	3.7 J	
2,4-Dinitrophenol	ug/l	<24	<19	<190	<120	
2,4-Dinitrotoluene	ug/l	<4.9	<3.8	<38	<25	
2,6-Dinitrotoluene	ug/l	<4.9	<3.8	<38	<25	
2-Chloronaphthalene	ug/l	<0.97	<0.77	<7.7	<4.9	
2-Chlorophenol	ug/l	<4.9	<3.8	<38	<25	
2-Methylnaphthalene	ug/l	5.2	9.5	19	15	
2-Methylphenol	ug/l	<4.9	<3.8	9.2 J	6.5 J	
2-Nitroaniline	ug/l	<24	<19	<190	<120	
2-Nitrophenol	ug/l	<4.9	<3.8	<38	<25	
3,3'-Dichlorobenzidine	ug/l	<4.9	<3.8	<38	<25	
3-Nitroaniline	ug/l	<24	<19	<190	<120	
4,6-Dinitro-2-methylphenol	ug/l	<24	<19	<190	<120	
4-Bromophenyl phenyl ether	ug/l	<4.9	<3.8	<38	<25	
4-Chloro-3-methylphenol	ug/l	<4.9	<3.8	<38	<25	
4-Chloroaniline	ug/l	<4.9	<3.8	<38	<25	
4-Chlorophenyl phenyl ether	ug/l	<4.9	<3.8	<38	<25	
4-Nitroaniline	ug/l	<24	<19	<190	<120	
4-Nitrophenol	ug/l	<24	<19	<190	<120	

Compound	Haita	Water Samples Collected				
	Units	B-1W 11/9/11	B-2W 11/9/11	B-4W 11/8/11	B-5W 11/8/11	
SVOCs Continued						
Acenaphthene	ug/l	3.4	2.4	<7.7	1.1 J	
Acenaphthylene	ug/l	4.3	3.5	3.7 J	2.9 J	
Acetophenone	ug/l	<4.9	<3.8	<38	<25	
Anthracene	ug/l	<0.97	<0.77	<7.7	<4.9	
Atrazine	ug/l	<4.9	<3.8	<38	<25	
Benzaldehyde	ug/l	<4.9	<3.8	<38	<25	
Benzo[a]anthracene	ug/l	<0.97	<0.77	<7.7	<4.9	
Benzo[a]pyrene	ug/l	<0.97	<0.77	<7.7	<4.9	
Benzo[b]fluoranthene	ug/l	<0.97	<0.77	<7.7	<4.9	
Benzo[g,h,i]perylene	ug/l	<0.97	<0.77	<7.7	<4.9	
Benzo[k]fluoranthene	ug/l	<0.97	<0.77	<7.7	<4.9	
Bis(2-chloroethoxy)methane	ug/l	<4.9	<3.8	<38	<25	
Bis(2-chloroethyl)ether	ug/l	<0.97	<0.77	<7.7	<4.9	
Bis(2-ethylhexyl) phthalate	ug/l	<9.7	<7.7	<77	<49	
Butyl benzyl phthalate	ug/l	<4.9	<3.8	<38	<25	
Caprolactam	ug/l	<24	<19	<190	<120	
Carbazole	ug/l	0.91 J	0.46 J	6.8 J	4.1 J	
Chrysene	ug/l	<0.97	<0.77	<7.7	<4.9	
Dibenz(a,h)anthracene	ug/l	<0.97	<0.77	<7.7	<4.9	
Dibenzofuran	ug/l	4.7 J	4.7	<38	2.2 J	
Diethyl phthalate	ug/l	<4.9	<3.8	<38	<25	
Dimethyl phthalate	ug/l	<4.9	<3.8	<38	<25	
Di-n-butyl phthalate	ug/l	<4.9	<3.8	<38	<25	
Di-n-octyl phthalate	ug/l	<4.9	<3.8	<38	<25	
Fluoranthene	ug/l	0.79 J	0.87	<7.7	<4.9	
Fluorene	ug/l	3.5	4.0	1.1 J	0.88 J	
Hexachlorobenzene	ug/l	<0.97	<0.77	<7.7	<4.9	
Hexachlorobutadiene	ug/l	<0.97	<0.77	<7.7	<4.9	
Hexachlorocyclopentadiene	ug/l	<4.9	<3.8	<38	<25	
Hexachloroethane	ug/l	<4.9	<3.8	<38	<25	
Indeno[1,2,3-cd]pyrene	ug/l	<0.97	<0.77	<7.7	<4.9	
Isophorone	ug/l	<4.9	<3.8	<38	<25	
Methylphenol, 3 & 4	ug/l	<4.9	0.41 J	7.2J	8.8 J	
Naphthalene	ug/l	100	58	410	250	
Nitrobenzene	ug/l	<9.7	<7.7	<77	<49	
N-Nitrosodi-n-propylamine	ug/l	<0.97	<0.77	<7.7	<4.9	
N-Nitrosodiphenylamine	ug/l	<4.9	<3.8	<38	<25	
Pentachlorophenol	ug/l	<4.9	<3.8	<38	<25	
Phenanthrene	ug/l	3.8	6.0	3.4 J	2.7 J	
Phenol	ug/l	0.48 J	1.3	7.1 J	8.6	
Pyrene	ug/l	0.61 J	0.61 J	<7.7	<4.9	

Compound	Units	Water Samples Collected				
		B-1W 11/9/11	B-2W 11/9/11	B-4W 11/8/11	B-5W 11/8/11	
VOCs		•				
1,1,1-Trichloroethane	ug/l	<2.0	<1.0	<20	<13	
1,1,2,2-Tetrachloroethane	ug/l	<2.0	<1.0	<20	<13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	<2.0	<1.0	<20	<13	
1,1,2-Trichloroethane	ug/l	<2.0	<1.0	<20	<13	
1.1-Dichloroethane	ug/l	<2.0	<1.0	<20	<13	
,			-		-	
1,1-Dichloroethene 1,2,4-Trichlorobenzene	ug/l	<2.0 <2.0	<1.0 <1.0	<20 <20	<13 <13	
, ,	ug/l	<2.0	<1.0	<20		
1,2-Dibromo-3-Chloropropane	ug/l			ļ	<13	
1,2-Dibromoethane (EDB)	ug/l	<2.0	<1.0	<20	<13	
1,2-Dichlorobenzene	ug/l	<2.0	<1.0	<20	<13	
1,2-Dichloroethane	ug/l	<2.0	<1.0	<20	<13	
1,2-Dichloropropane	ug/l	<2.0	<1.0	<20	<13	
1,3-Dichlorobenzene	ug/l	<2.0	<1.0	<20	<13	
1,4-Dichlorobenzene	ug/l	<2.0	<1.0	<20	<13	
2-Butanone (MEK)	ug/l	<10	<5.0	<100	<63	
2-Hexanone	ug/l	<10	<5.0	<100	<63	
4-Methyl-2-pentanone (MIBK)	ug/l	<10	<5.0	<100	<63	
VOCs Continued						
Acetone	ug/l	<10	3.3 J	<100	<63	
Benzene	ug/l	39	1.4	320	210	
Bromodichloromethane	ug/l	<2.0	<1.0	<20	<13	
Bromoform	ug/l	<2.0	<1.0	<20	<13	
Bromomethane	ug/l	<2.0	<1.0	<20	<13	
Carbon disulfide	ug/l	<2.0	<1.0	<20	<13	
Carbon tetrachloride	ug/l	<2.0	<1.0	<20	<13	
Chlorobenzene	ug/l	<2.0	<1.0	<20	<13	
Chloroethane	ug/l	<2.0	<1.0	<20	<13	
Chloroform	ug/l	<2.0	<1.0	<20	<13	
Chloromethane	ug/l	<2.0	<1.0	<20	<13	
cis-1,2-Dichloroethene	ug/l	<2.0	<1.0	<20	<13	
cis-1,3-Dichloropropene	ug/l	<2.0	<1.0	<20	<13	
Cyclohexane	ug/l	<2.0	<1.0	<20	<13	
Dibromochloromethane	ug/l	<2.0	<1.0	<20	<13	
Dichlorodifluoromethane	ug/l	<2.0	<1.0	<20	<13	
Ethylbenzene	ug/l	2.5	0.42 J	31	28	
Isopropylbenzene	ug/l	<2.0	<1.0	<20	<13	
Methyl acetate	ug/l	<2.0	<1.0	<20	<13	
Methyl tert-butyl ether	ug/l	<2.0	<1.0	<20	<13	
Methylcyclohexane	ug/l	<2.0	<1.0	<20	<13	
Methylene Chloride	ug/l	<2.0	<1.0	7.8 J	4.2 J	
Styrene	ug/l	<2.0	0.57 J	17 J	5.6 J	
Tetrachloroethene	ug/l	<2.0	<1.0	<20	<13	
Toluene	ug/l	11	1.1	47	21	
trans-1,2-Dichloroethene	ug/l	<2.0	<1.0	<20	<13	
trans-1,3-Dichloropropene	ug/l	<2.0	<1.0	<20	<13	
Trichloroethene	ug/l	<2.0	<1.0	<20	<13	
Trichlorofluoromethane	ug/l	<2.0	<1.0	<20	<13	
Vinyl chloride	ug/l	<2.0	<1.0	<20	<13	
Xylenes, Total	ug/l	18	6.8	61	43	

Compound	Units	Water Samples Collected			
		B-1W 11/9/11	B-2W 11/9/11	B-4W 11/8/11	B-5W 11/8/11
General Chemistry					
Ammonia, distilled	ug/l	2.1	1.0	11 B	15 B
Chemical Oxygen Demand	ug/l	46	13	35	43
Cyanide, Total	ug/l	330	15	160	54
HEM (Oil and Grease)	ug/l	2.3 J	2.5 J	1.9 J	3.2 J
рН	ug/l	9.74 HF	10.8 HF	11.8 HF	11.8 HF
Total Suspended Solids	ug/l	<4.0	<4.0	4.8	<4.0

Notes:


Metals samples were field filtered. Data presented is provided as dissolved.

ug/l - micrograms per liter

- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- HF Field parameter with a holding time of 15 minutes.

Geotechnical and Environmental Exploration, 5A and 7A Quench Towers, US Steel Clairton Works, Clairton, Pennsylvania

FIGURE

APPENDIX A LOGS OF BORINGS

PROJI	ECT N	AME _	USS-C	lairton				PROJECT NUMBER C071418.13 DATE:	1OF3 START11/3/11
STR. I	NO				_ LAT.			LONG	END 11/3/11
DRILL EQUIF	ERS N	NAME/O	COMPA CME	NY E	arl Dye	e/Penn unt	Drill		760.0
			DG						
ОЕРТН (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
0.6								0.6 Concrete	_
 2.1	S-1	50 20 14	1.4'	-		GP	-	Slag and sand, moist, very dense, green-brown Fill 0.0PPM	_ _ _
_									_
									_
									_
 5.0								5.0	_
	S-2	50/.4	1.2'	<u> </u>		GP	_	Slag, moist to dry, very dense, gray *Continue	to pound spoon
5.9	0-2	50/.3						6.0'	nmental sample at —
_		50/.2						0.0 PPM	_
									_
									_
									_
									_
10.0									_
	S-3	12 10	0.5'	_		GP	_	- Moist, dense, black-white 0.0PPM	_
 11.5	3-3	2	0.5	-			_		_
									_
									_
									_
									_
15.0 15.4	S-4	50/.4	0.4'	-		GP	-	15' Enviro	onmental sample _
		37.7						0.0PPM	-
									_
_									_
									_
_									
 20.0								20.0	_
20.0 NOT	E: s	L FRATIFIC	CATION	LINES A	T THE A	L APPROX		BOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

-									SHEET_2_OF_3_
PROJ	ECT N	AME	USS-C	lairton				PROJECT NUMBER <u>C071418.13</u>	DATE: START
								LONG	O.G. END 11/3/11
				D. Glenr					ELEV. 760.0
						<i>'</i> D .			
				85 Tru					_
				1/4 HSA					
								_; WATER: DEPTH: <u>16.2'</u> TIME: <u>0</u>	
CHEC	KED B	Y: RE	G				_ ;	DATE: <u>11/16/2011</u> DEPTH: <u>16.2'</u> TIME: <u>12</u>	DATE:
								NOT ENCOUNTERED	
				<u>@</u> /		1			
(SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	\ \\	POCKET PENT/ TORVANE (TSF)	၂ တ္က 🖊	Þ		
ОЕРТН (FT)	Ä).5 F	ÆR,		PEI E (T	NSCS O	H ₂ O CONTENT		
TH	PLE	VS/	Ş.Ε.	RQD (%)	KET	D AASHTO	Ő	DESCRIPTION	REMARKS
DEF	PE	0 0	REC	R/ /B	S V V	/ AS	Ő O		
	% ≥			/ \bar{g}	PC CT	/ ~	I		
00.5	S-5	100/.5	0.5'	-		GP		Slag, saturated, very dense, gray	0.0PPM
20.5_	0-0	1007.3	0.5			-		The state of the s	_
									-
									-
									_
									-
									_
									_
									_
									_
25.0_		24				GP		- Saturated medium dense, gray	0.0PPM
	0.0	24	0.51					- Saturated medium dense, gray	- O.OI 1 WI
	S-6	8	0.5'	-			-		_
26.5_		5							_
									_
									_
									_
									_
									_
									_
30.0_						SW		30.0 Fine to medium Sand, saturated, loose, dark	Allendium O ODDM
		2				SVV		gray	Alluvium 0.0PPM —
	S-7	2	1.1'	-			-		_
31.5_		3							_
									_
									_
									_
									_
									_
									_
35.0_		_				N 41		uith como plas	0.0DDM 0.0 TOF
		3				ML		-with some slag	0.0PPM 3.0 TSF
	S-8	4	1.0'	-			-	36.0	_
36.5_		6						Silt, moist, stiff, medium brown	_
									_
									_
40.0									
NOT	TE: ST	TRATIFIC	CATION	LINES A	T THE A	APPROXII	MATE B	SOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

PROJ	ECT N	AME _	USS-C	lairton				PROJECT NUMBER <u>C071418.13</u>	SHEET 3 OF 3 DATE: START 11/3/11
								LONG	O.G. END 11/3/11
DRILI	ERS N	IAME/C	COMPA	NY _E	arl Dye	e/Penn I	Drill		ELEV. 760.0
				1/4 HSA					
			OG					DATE: WATER: DEPTH: 16.2' TIME: 0 DATE: 11/16/2011 DEPTH: 16.2' TIME: 1 NOT ENCOUNTERED	
ОЕРТН (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
 41.5	S-9	5 10 13	1.4'	-		ML	-	- very stiff, medium brown, trace gray, mottling	0.0PPM 2.75 TSF
45.0 _46.5_	S-10	5 10 14	1.5'	-		ML	-		0.0PPM 1.5 TSF
 48.5		WOH				ML		48.5 Silt, very moist, very soft, dark gray	0.0PPM 0.5 TSF
50.0_	S-11	WOH 2	1.5'	-			-	50.0 Bottom of boring @ 50.0'	
 									_
 								Monitoring Well (B-1) Cuttings 0 - 6 Bentonite 6 - 8 Sand 8 - 30 Screen 10 - 30 (2" PVC 0.010 Slot) Sand 30 - 31	_ _ _
 								Sand 8 - 31 Bentonite 31 - 33 Sand 33 - 50 Abandon Well 11/11/11	_ _ _
NO1	TE: sī	RATIFIC	CATION	LINES A	T THE /	APPROXI	MATE B	DUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORII	NG —

TR. N	O				_ LAT.			PROJECT NUMBER <u>C071418.13</u> LONG DATE: START <u>11/1/11</u> O.G. END <u>11/2/11</u> ELEV. <u>760.0</u>
ORILLI QUIP	ERS N MENT	IAME/C	CMP/		arl Dye	e/Penn l		
ASIN	3: SIZ	Έ:		;	DEP			; WATER: DEPTH:16.1' TIME: _0 DATE: DATE:11/16/2011
ОЕРТН (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION REMARKS
0.6_								0.6 Concrete
	S-1	16 10	1.3'	-		SP	-	Sand and Slag, medium dense, brown Fill 0.0PPM
-2.1_ - –		11						
5.0								5.0
		25				SP/GP		Sand, Gravel, some Slag, moist, very dense, brown
6.5	S-2	28 27	1.5'	-			-	Environmental Sample at
								6.0
10.0								10.0
10.3	S-3	50/0.3	0.3'	<u> </u>		GP		Slag, dry, very dense, green-white 0.0PPM
. 4								
.]								
15.0		38				GP		15.0 Slag with some sand, moist, very dense, 0.0PPM
	S-4	35	1.4'	_			_	gray-white Environmental sample to
16.5		14						lab
.								
-								
20.0 <u> </u>	=: ST	RATIFIC	CATION	LINES A	T THE A	L	MATE E	20.0 BOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING

STR. N	NO				_ LAT.			_ PROJEG _ LONG .			<u> 118.13</u>		_	DATE: START 11/1/11 D.G. END 11/2/11 ELEV. 760.0
ORILL QUIP	ERS N	NAME/O	CMPA		arl Dye	e/Penn l								
CASIN	IG: SIZ	ĽE:		;	DEP					DEPTH:		_ TIME: _		DATE:
ОЕРТН (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT		D	ESCRIPTI	ON			REMARKS
20.6-	S-5	40 \50/.1	0.6'	-		GP	-	Slag,	wet to sat	urated, ver	y dense, g	ray-white	0.0	PPM
25.0 25.2 25.2 	S-6	\ <u>50/0.2</u> /	0.2'	-		GP		00.0					0.0	PPM
28.0 29.5 30.0	S-7	45 50/.3	0.8'	-		GP	-	28.0 Slag, 30.0	saturated,	very dens	e, gray		0.0	PPM
 	R-1	NA	0.7'	14	NA	GP	-	1.0' S (No F	Steel Slab, Recovery)	very hard,	gray		0.0	PPM
35.0_ -				0				B-2 N Cuttir Bento Sand	Monitoring Monitoring Solor 5 on the 5 - 7		ation			
 NOT	E: s1	 	CATION	LINES A	T THE A	APPROXI	MATE B	2" P\	en 10 - 30 /C 0.010 s idoned 11/ ETWEEN SO	11/11	K TYPES FO	OR THIS BOF	RING	_

							PROJECT NUMBER <u>C071418.13</u> LONG	DATE: START 11/10/11 O.G. END 11/10/11
STR. NO INSPECTO								O.G. END THIGHT
EQUIPMEN	IT USEC	CME	85 Tru	ck Mo	unt			
DRILLING I								
							_ ; WATER: DEPTH: <u>16.0'</u> TIME: <u>0</u>	
CHECKED	BY: KI	JG				_ ;	DATE: <u>11/16/2011</u> DEPTH: <u>16.0'</u> TIME: <u>12</u>	DATE:
					. /		NOT ENCOUNTERED	
DEPTH (FT) SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
0.0	7				GP		Coke and Slag, dry, dense, black	0.0PPM
S-1	7	1.1'	-			-		_
_1.5	8							_
								_
								_
								_
 _5.0							5.0	_
_0.0	7				GP		Slag and Sand, moist, very dense, gray-black	Environmental sample to
_		1.3'	-			-		ab —
_6.5	41							0.0PPM
								_
								_
								_
_							(Congreto)-1 5! thick	-
10.0							(Concrete)~1.5' thick	_
10.0 10.1 S-3		0.1'	-		GP	- /		0.0PPM
								_
_								-
_								_
_								_
								_
_								_
								_
15.0 15.3 S-4	80/.3	0.3'	_		GP			0.0 PPM
_								Environmental sample to — ab —
_								_
								_
							(Concrete)~1.0' thick	
_								_
20.0							20.0	-
	STRATIFIC	CATION	LINES A	T THE A	L NPPROXI	MATE B	20.0 OUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

								PROJECT NUMBER <u>C071418.13</u>	SHEET 2 OF 4 DATE: START 11/10/11
								LONG	O.G. END 11/10/11
DRIL	LERS N	NAME/0	COMPA	NY _E	arl Dye	e/Penn	Drill		ELEV
CASII	NG: SIZ	ΖΕ:	20	;	DEP	TH: _		; WATER: DEPTH: <u>16.0'</u> TIME: <u>0</u>	DATE:
CHEC	KED B	Y: _K	<i>.</i>				_ ;	DATE: 11/16/2011 DEPTH: 16.0' TIME: 12	2 DATE:
							/	NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
20.1	S-5	50/0.1/	0.1'	-		GP	- /	Slag, saturated, very dense, grey	0.0PPM
	S-6	25 90	1.0'	-		GP	-	- white-gray	0.0PPM
30.0 30.2	S-7	76/0.2	0.2'			GP	- /	30.0 Slag and Sand, saturated, very dense, grey	0.0PPM -
								35.0	- - - - - - -
		2				ML		Silt, some Sand, saturated, very soft, black	Alluvium 0.0PPM 0.5 TSF
	S-8	2 3	0.5'	-			-		_
36.5		3							_
									_
									_
									_
40.0 NO	[CATION	LINIEG	T TI 'C 1		 	DUNDARY RETWEEN COIL AND ROCK TYRES FOR THE ROPE	
NO	L. S	KATIFI(JATION	LINES A	I IHE A	APPROX	IIVIATEB	DUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORIN	lG

~ J			1100 0					DD 0 15 07 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SHEET 3 OF 4
								PROJECT NUMBER <u>C071418.13</u> LONG	DATE: START <u>11/10/11</u> O.G. END <u>11/10/11</u>
									O.G. ELEV.
DRILI EQUIF	ERS N	NAME/O	COMPA CME	NY <u>E</u> 85 Tru	arl Dye	e/Penn unt	Drill		
								; WATER: DEPTH: _16.0' TIME: _0_	DATE
			OG					DATE: 11/16/2011 DEPTH: 16.0' TIME: 12 NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
 41.5	S-9	1 2 5	0.5'	-		ML	-	Silt, some Sand, saturated, very soft, black (continued)	0.0PPM 0.5 TSF
 45.0								45.0	
0.0_		2				SP		Sand with Silt, trace rounded gravel, saturated, loose, gray	0.0PPM
 46.5	S-10	3 4	0.5'	-			-	16666, g.u.y	_
		-							
									_
									_
									_
 50.0								50.0	_
50.0		8				GW		Rounded Gravel, with Sand and Shale partings,	0.0PPM
	S-11	8	1.2'	-			-	saturated, dense, black	_
51.5		10							_
									_
									Llit rook @ 52! while
 54.0									Hit rock @ 53' while augering 54' TOR
54.0	S-12/	50/.1 /	0.0'	-		GW	/		_
								55.0	
				92				Claystone, slightly broken, soft to medium hard, gray	_
									_
									_
LI	R-1	NA	4.6'		NA	NA	_		_
<u> </u>	-								_
<u> </u>									_
									_
60.0	E			88		DDD 2: ::			
NO1	⊏. SI	KATIFI(JAHON	LINES A	i ihe <i>f</i>	*KLKOXI	IVIA I E B	OUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	5

								PROJECT NUMBER <u>C071418.13</u> LONG	SHEET 4 OF 4 DATE: START 11/10/11 O.G. END 11/10/11
INSPE	CTOR	Rayr	nond D). Glenr	1				O.G. ELEV.
				1/4 HSA					
								; WATER: DEPTH: <u>16.0'</u> TIME: <u>0</u>	DATE:
								DATE: 11/16/2011 DEPTH: 16.0' TIME: 12	
								NOT ENCOUNTERED	
	z		RECOVERY (Ft.)	(%)	. (c				
E.	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	ΞRΥ	ER)	POCKET PENT/ TORVANE (TSF)	USCS O	CONTENT		
Ę	PLE 30R	/S/0. AMF	OVE (Ft.)	00/	H H	기/일	NO	DESCRIPTION	REMARKS
БЕРТН (FT)	SAMI PE/C	LOW N S	REC	RaD (%)	SK SK	AASHTO	H ₂ O C		
	″ ≿	⊡ ∪		/ &	9 D	$ \cdot $	I		
				100					
									_
L J								- with red mottling, broken	_
L -									_
	R-2	NA	5.0'		NA	NA	-		_
									_
									_
\vdash \dashv									_
65.0				78				65.0	_
L J								Bottom of Boring at 65.0'	_
									_
L -									_
\vdash \dashv									_
\vdash \dashv									_
\vdash \dashv									_
									_
L J									_
L -									_
L -									_
\vdash \dashv									_
\vdash \dashv									_
\vdash \dashv									_
									_
L]									_
$\vdash \dashv$									_
$\vdash \dashv$									_
									_
\vdash \dashv									_
\vdash \dashv									_
L I									
L J									_
$\vdash \dashv$									_
\vdash \dashv									_
NOT	E: s1	RATIFIC	CATION	LINES A	T THE A	APPROXI	MATE B	L COUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

STR. NO LAT LONG O.G. END INSPECTOR Raymond D. Glenn ELEV	11/7/11
INOPECTOR INAMINION D. OIGHII	
DRILLERS NAME/COMPANY <u>Earl Dye/Penn Drill</u> EQUIPMENT USED <u>CME 85 Truck Mount</u>	
EQUIPMENT USED CME 85 Truck Mount DRILLING METHODS 4-1/4 HSA	
CASING: SIZE:; DEPTH:; WATER: DEPTH: TIME: _0 DATE	
CHECKED BY: RDG ; DATE: 11/16/2011 DEPTH: 16.1' TIME: 12 DATE	:
NOT ENCOUNTERED	
SAMPLE NO./ TYPE/CORE RUN BLOWS/0.5 FT. ON SAMPLER ON SAMPLER (Ft.) RECOVERY (Ft.) ROD (%) ROD (%) POCKET PENT/ TORVANE (TSF) USCS AASHTO NOITIGITATION NOIT	RKS
Concrete	
	_
GP	_
2.5 2	_
	_
	_
	_
	_
- S-2 45 1.4' - 5-6.5 to lab 0	OPPM -
6.5 20	_
	_
	_
	_
	_
10.0	_
S-3 38 GP Slag, moist, very dense, blue-green 0.0PPM	_
-11.2- 50/.2/	_
	_
	_
	_
	_
	_
GP Slag, moist, very dense, gray 0.0PPM	_
S-4 47 1.2' - Environmental lab	sample to _
16.3 50/.3 lab	_
	_
	_
	_
	_
20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	

-									SHEET OF
PROJ	ECT N	AME _	USS-C	lairton				PROJECT NUMBER C071418.13	DATE: START
STR.	NO				_ LAT.			LONG	O.G. END
). Glenr					ELEV.
				85 Tru					
				1/4 HSA					
								; WATER: DEPTH: 16.1' TIME: 0	DATE:
								DATE: 11/16/2011 DEPTH: 16.1' TIME: 12	
OFILC	INLD D	١					- '	NOT ENCOUNTERED	DATE:
				© /		1 /		NOT ENGOGNIERED	
_	SAMPLE NO./ TYPE/CORE RUN	ا . ۳	RECOVERY (Ft.)	(/ ۲۲	POCKET PENT/ TORVANE (TSF)	၂ တ္ဟ 🖊	Þ		
БЕРТН (FT)	: NC	BLOWS/0.5 FT. ON SAMPLER	ER (VEF	PEN E (T)	USCS	CONTENT		
TH	IPLE COF	VS/() S F.		CET ANE	NASHTO	Ó	DESCRIPTION	REMARKS
DEF	SAM PE/	LOV N S	RE(RaD (%)	OC.	/ A	H ₂ O (
	* ≽	_ m		/ &	ďΣ	/ `			
		60				GP		Slag, saturated, very dense, gray	Spoon wet
	S-5	47	1.1'	-			-		0.0PPM
-21.2-		50/.2/							_
									_
									_
									_
									_
									_
25.0								25.0	
25.3	<u>S-6</u>	50/.3	0.3'	<u> </u>		GP		Slag, very dense, gray	0.0PPM
									_
									_
									_
									_
									_
									_
									_
								20.0	_
30.0		12				GP		30.0 Slag and medium Sand, saturated, very dense,	0.0PPM
	S-7	17	1.2'	-			-	gray	_
-31.2-		50/.2							_
									_
									_
									_
									_
									_
									_
								35.0	_
		8				ML			Alluvium 1.5 TSF
	S-8	10	1.5'	-			-		0.0PPM
36.5		11							_
									_
									_
									_
									_
									_
									_
40.0 NO	[LINES	T TI 'C '	DDDOX"	NAATE 5	INCLINIDADIV DETAILEDA COLL AND DOCK TVDEO FOR THE SOCIETY	
NO	ı⊏. S⊺	KATIFIC	JATION	LINES A	I IHE A	ALLKOXI	IVIA I E B	OUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

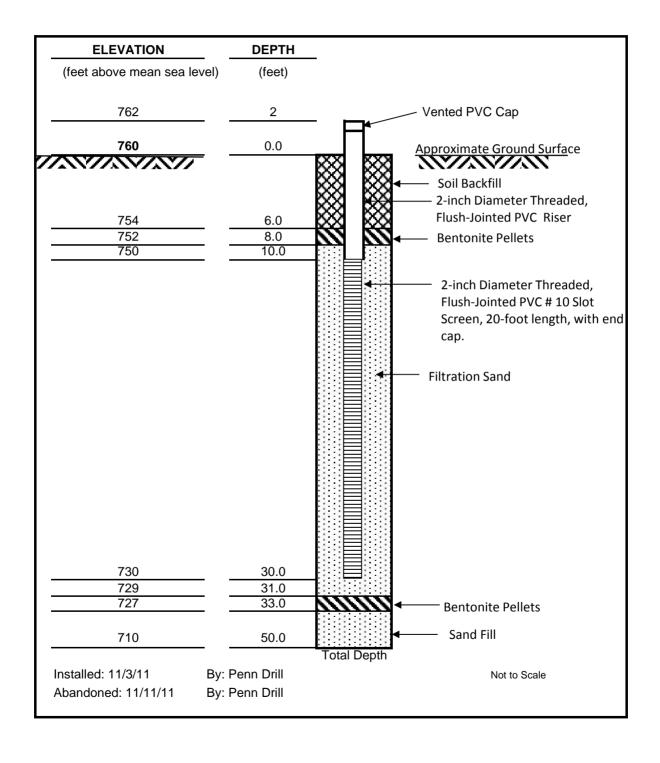
PROJECT NAME USS-Clairton PROJECT NUMBER C071418.13	DATE: START
INSPECTOR Raymond D. Glenn DRILLERS NAME/COMPANY Earl Dye/Penn Drill	O.G. END <u>11/7/11</u> ELEV
EQUIPMENT USED CME 85 Truck Mount DRILLING METHODS 4-1/4 HSA	
CASING: SIZE:; DEPTH:; WATER: DEPTH:; TIME: _0	
SAMPLE NO./ TYPE/CORE RUN BLOWS/0.5 FT. ON SAMPLE R. BLOWS/0.5 FT. ON SAMPLE NO./ TYPE/CORE RUN BLOWS/0.5 FT. ON SAMPLE NO./ TYPE/CORE RUN BLOWS/0.5 FT. ON SAMPLE NO./ TORVANE (TSF) VECOVERY (%) RQD (%) POCKET PENT/ TORVANE (TSF) NO. OSCA AASHTO NO. OSCA AAS	REMARKS
(continued)	.0PPM .75 TSF
	- - - -
S-10 S-10 22 1.2'	.5 TSF 0.0PPM
46.5 10 46.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48	- - -
10 ML 49.0	Jecomposed Rock
	_ _ _ _
	_ _ _ _
Monitoring Well B-4 Cuttings 0 - 6 Bentonite 6 - 8 Sand 8 - 10 Screen 10 - 30 (2" PVC, 0.010 Slot) Sand 30 - 31 Bentonite 31 - 33 Sand 33 - 50	- - - - - -
Abandoned 11/10/11 NOTE: STRATIFICATION LINES AT THE APPROXIMATE BOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	

TR. I	NO				_ LAT.			PROJECT NUMBER <u>C071418.13</u> LONG	DATE: START 11/4/11 O.G. END 11/10/11
ORILI QUIF	LERS N	NAME/O	CMPA CME		arl Dye ick Mo	e/Penn I unt	Drill		ELEV.
ASIN	NG: SIZ	Έ:		;	DEP	TH:		; WATER: DEPTH: 16.3' TIME: 0 DATE: 11/16/2011 DEPTH: 16.3' TIME: 12 NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION	REMARKS
								Concrete Slab	Pusher Pad
1.0_		35				GP		Slag and Sand, trace coal, dry, medium dense, brown	Fill 0.0PPM
 2.5	S-1	15 8	1.3'	-			-	5.5	_
									_
_									
5.0_								5.0	_
. –		5				GP		Slag, moist, medium dense, black-white	0.0PPM —
6.5_	S-2	3 8	1.0'	-			-		Sample to lab for environmental testing
. –									_
_									
. –									_
10.0									
10.3	<u>S-3</u>	50/.3	0.3'	<u> </u>		GP		- very dense, white-green	0.0PPM —
_									_
									_
-									_
. –									_
. –									_
15.0									
-	S-4	70 31	1.0'	_		GP			0.0PPM Sample to lab for
 16.5	3-4	17	1.0	_			-		environmental testing
								- become saturated 16.4	
-									_
_									
									_
 20.0_					L				
NOT	TE: ST	RATIFIC	CATION	LINES A	T THE A	PPROXI	MATE E	BOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORIN	G

								PROJECT NUMBER <u>C071418.13</u> LONG O.G. END <u>11/10/11</u>
								O.G. ELEV.
				E 85 Tru				
				1/4 HSA				
								; WATER: DEPTH: <u>16.3'</u> TIME: <u>0</u> DATE:
HEC	(ED B	Y:					_ ;	DATE:
				lo 7	1	1 /		NOT ENCOUNTERED
ОЕРТН (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION REMARKS
				\ <u>\</u>	ш –	/ GP	_	- very dense, gray-black 0.0PPM
	S-5	45 60	1.3'	_		GF	_	- very derise, gray-black
- <u> </u>		37						
. J								
- +								
- 4								
25.0		31				GP		25.0 Slag and Sand, saturated, very dense, 0.0PPM
	S-6	25	1.3'	-			-	brown-gray
26.5		15						
. 4								
- 4								
30.0								30.0
0.0		3				GP		Slag, saturated, medium dense, gray-black 0.0PPM
	S-7	7	1.0'	-			-	
31.5		10		-				-
. 4								
35.0								
		17				GP		0.0PPM
	S-8	10	1.1'	-			-	
36.5		10		-				-
. 4								
40.0								
NOTI	=: ST	RATIFIC	CATION	LINES A	T THE A	APPROXI	MATE E	BOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING

-									SHEET3_ OF4
PROJ	ECT N	AME _	USS-C	lairton				PROJECT NUMBER <u>C071418.13</u>	DATE: START
								LONG	O.G. END 11/10/11
									ELEV.
				D. Glenr					LLL V.
				85 Tru		unt			
				1/4 HSA					
								_; WATER: DEPTH: <u>16.3'</u> TIME: <u>0</u>	
CHEC	KED B	Y: RI	DG				_ ;	DATE: <u>11/16/2011</u> DEPTH: <u>16.3'</u> TIME: <u>12</u>	DATE:
								NOT ENCOUNTERED	
	7		RECOVERY (Ft.)	(% /					
Ē	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	≿	\ \ 	POCKET PENT/ TORVANE (TSF)	nscs O/O	Σ		
ОЕРТН (FT)		0.5 APL	\ KER (:) VE	E(1	$ s_0 / o $	CONTENT	D.F.O.DUDTION	DELLA DI/O
₽Ţ	₽ 0	WS/	8 E	(%) ECC	A N	NASHTO NE	8	DESCRIPTION	REMARKS
DE	SAN	S C	뀖	RaD (%)	00C	/ ≨	H ₂ 0		
	- E			/ &		/	_		
		4				SP/ML		Medium sand, loose, gray	Alluvium 0.0PPM
	S-9	3	1.4'	_			_	41.0	_
41.5		3						Silt with some fine sand, wet, very soft, brown	_
<u> </u>								-	0.5 TSF 0.0PPM
									_
									_
									_
									_
									_
 45.0								45.0	_
43.0		10				ML			1.5 TSF 0.0PPM
	S-10	10	1.2'				_	3, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
 46.5	0 10	28							_
40.5		20							_
									_
 48.0									_
48.0		18				ML			_
	S-11	38	1.5'	_					_
	3-11	48	1.5	_			-	49.2	_
49.5		40						Decomposed Slaystone, soft, red-brown, very broken	_
50.0				84					Decomposed rock
								150.5	TOR
<u> </u>								Siajotorio, cort, gray	_
<u> </u>									_
								52.3	_
<u> </u>	R-1	NA	4.2'		NA	NA	-	Siltstone, grey, medium hard, very broken	_
<u> </u>									_
<u> </u>									_
									_
<u> </u>									_
55.0				26 82					_
<u> </u>				02					_
⊢ –									_
<u> </u>									_
⊢ –								57.0 Siltetone modium hard gray broken	_
⊢ –	R-2	NA	4.1'		NA	NA	-	Siltstone, medium hard, gray, broken	_
									_
⊢ –									_
L –									_
L -									_
60.0				20				60.0	
NO	E : S	RATIFIC	CATION	LINES A	THE A	PPROXI	MATE E	SOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING	;

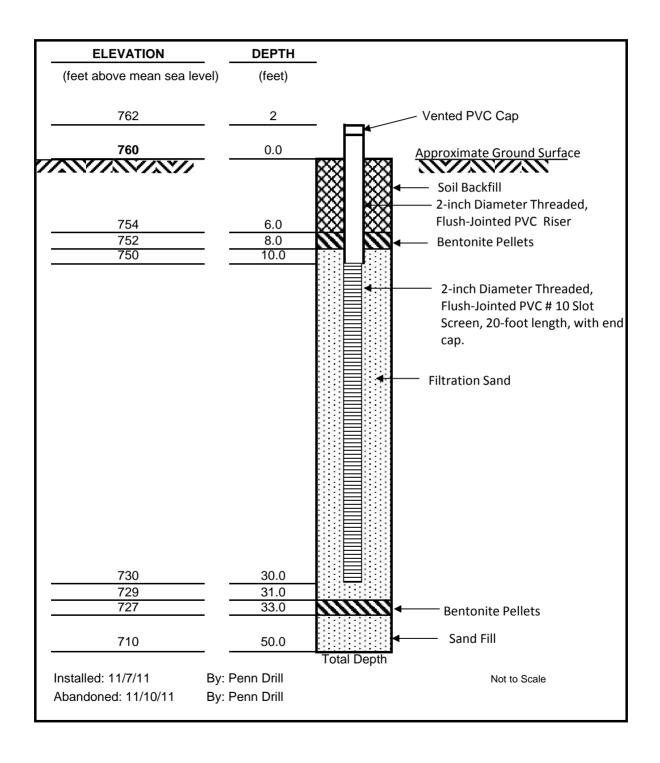
STR. N INSPE DRILL EQUIP DRILLI	ROJECT NAME USS-Clairton PROJECT NUMBER C071418.13 DATE: START 11/4/11 TR. NO LAT LONG O.G. END 11/10/11 NSPECTOR Raymond D. Glenn PRILLERS NAME/COMPANY Earl Dye/Penn Drill QUIPMENT USED CME 85 Truck Mount PRILLING METHODS 4-1/4 HSA PASING: SIZE: ; DEPTH: ; WATER: DEPTH: 16.3' TIME: 0 DATE:									
CHECK	(ED B	Y: R	OG		DLI		_ ;	DATE: 11/16/2011 DEPTH: 16.3' TIME: 12 NOT ENCOUNTERED	DATE:	
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	H ₂ O CONTENT	DESCRIPTION	REMARKS	
				y		<u> </u>		END OF BORING at 60.0		
								Monitoring Well B-5 Cuttings 0-6 Bent 6-8 Sand 8-30 Screen 10-30 (29.55) *Screen pulled up due to slag binding augers (2" PVC, 0.010 Slot) Sand 30-31 Bent 31-33 Sand 33-35 Note: B-5 Originally drilled to 50.0'. The well was installed. At a later date, the PVC was removed and the boring was augered to 50.0', then cored (NQ) to 60.0' BGS. Well abondoned 11/10/11		
_									_	
NOT	F: st	RATIFIC	CATION	LINES A	T THE A	L APPROXI	MATE P	L SOUNDARY BETWEEN SOIL AND ROCK TYPES FOR THIS BORING		

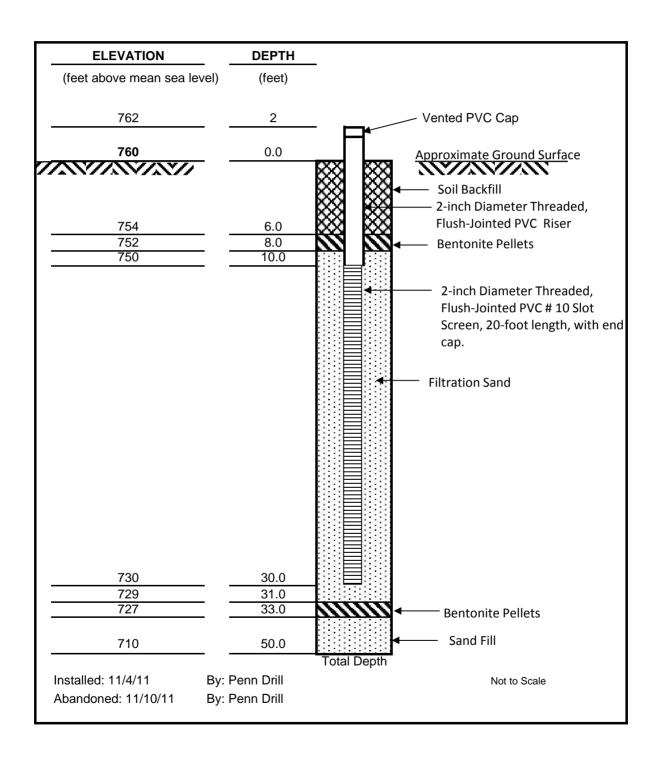


BORING NO. **B-6A - B-6F**

-									SHEETOFT
PROJ	ECT N	AME	USS-C	lairton				PROJECT NUMBER <u>C071418.13</u>	DATE: START
								LONG	O.G. END 11/9/11
									O.G. ELEV.
				D. Glenn					ELEV.
							Drill		
				85 Tru		unt			
				1/4 HSA					
								_; WATER: DEPTH: TIME:	
CHEC	KED B	Y: RE	G				_ ;	DATE: TIME: TIME:	DATE:
								NOT ENCOUNTERED	
				<u>@</u> /					
	SAMPLE NO./ TYPE/CORE RUN	l÷. ∺.	RECOVERY (Ft.)		POCKET PENT/ TORVANE (TSF)	တ္တ /	Þ		
ОЕРТН (FT)	Ä	BLOWS/0.5 FT. ON SAMPLER	ŒŖ,		PEI E (T	USCS	CONTENT		
Ŧ	PLE	VS/	() F.		KET	D()	Ő	DESCRIPTION	REMARKS
DEF	PE	0 Z	REC	RQD (%)	S V N	AS /	H ₂ O (
	″ ≽			/ 없	PC T	/ 1	I		
0.0		9				GP		Slag and Construction Debris, very dense	0.0PPM
0.0	S-1	9	1.1'	_			_	black/gray	-
	0-1	10	1				_		-
1.5		10		\vdash					-
									-
									_
									_
									_
									_
									_
5.0		3				GP			0.0PPM -
	0.0	~				Gi			-
	S-2	7	1.4'	-			-		_
6.5		3							_
									_
									_
									_
									_
									_
									_
10.0						00			
		25				GP			0.0PPM _
	S-3	50/0.1	0.6'	-			-		_
11.5				\sqcup				11.5	_
<u> </u>								END OF BORING at 11.5'	_
<u> </u>									_
L -									_
L -									_
L -									_
L -									_
								40 4 6 404 400055	_
L _								*Boring offset 6 times (A,B,C,D,E,F) due to obstructions at 5.0' and 10.0'.	_
L _								Total drilling = 56.0' lineal feet.	_
L _								-	_
L _								*Will advance B-5 from TOR to obtain rock core 50.0 - 60.0	_
L]								00.0 00.0	
L T									_
									_
									_
									_
NO	F: 91		NOITAC	I INES A	T THE /	\DDDD\XI	MATE	ROLINDARY RETWEEN SOIL AND ROCK TYPES FOR THIS BORIN.	

APPENDIX B TEMPORARY MONITORING WELL DETAIL


B-1
Temporary Monitoring Well
5A and 7A Quench Tower Project
United States Steel Corporation, Clairton Works
GAI Project C071418.13


B-2
Temporary Monitoring Well
5A and 7A Quench Tower Project
United States Steel Corporation, Clairton Works
GAI Project C071418.13

B-4
Temporary Monitoring Well
5A and 7A Quench Tower Project
United States Steel Corporation, Clairton Works
GAI Project C071418.13

B-5
Temporary Monitoring Well
5A and 7A Quench Tower Project
United States Steel Corporation, Clairton Works
GAI Project C071418.13

APPENDIX C ENVIRONMENTAL LABORATORY TEST RESULTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

TestAmerica Job ID: 180-5622-1

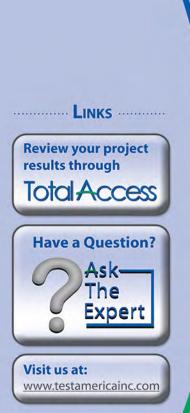
Client Project/Site: USS Clairton - C071418.13

Revision: 1

For:

GAI Consultants 385 East Waterfront Drive Homestead, Pennsylvania 15120

Attn: Mr. John R Boulanger


Authorized for release by: 12/14/2011 2:59:34 PM

Kathryn Bort
Project Manager II
kathy.bort@testamericainc.com

Kathrynffort

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GAI Consultants Project/Site: USS Clairton - C071418.13 TestAmerica Job ID: 180-5622-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Certification Summary	10
Sample Summary	11
Method Summary	12
Client Sample Results	13
QC Sample Results	
QC Association	175
Chain of Custody	195
Receint Checklists	200

2

4

5

9

10

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Job ID: 180-5526-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-5526-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 19977 exceeded control limits for the following analytes: Acetone, which is not a control compound.

GC/MS Semi VOA

Method 8270C: The laboratory control sample duplicate (LCSD) for batch 19851 exceeded control limits for the following analytes: Atrazine. This analyte was biased high in the LCSD and was not detected in the associated samples and is not a required method QC compound; therefore, the data have been reported.

Method 8270C: Surrogate recovery for the following samples was outside control limits: B-1 (6')-11/3/11 (180-5526-3), B-2 (16')-11/2/11 (180-5526-2), B-2 (6')-11/2/11 (180-5526-1). Re-extraction and/or re-analysis was performed with concurring results. Both sets of data have been reported.

Method 8270C: Surrogate recovery for the following samples was outside control limits: B-1 (6')-11/3/11 (180-5526-3), B-2 (16')-11/2/11 (180-5526-2), B-2 (6')-11/2/11 (180-5526-1). Evidence of matrix interference is present; Re-extraction was performed. Reextraction was within sample reextraction HT and confirmed initial analysis. Therefore, both sets of data will be reported.

GC Semi VOA

No analytical or quality issues were noted.

Method 6010B: The following sample was diluted due to the abundance of target analytes: B-1 (15')-11/3/11 (180-5526-4). Elevated reporting limits (RLs) are provided. The concentration of manganese in the sample was above the linear range and required dilution. Silver, chromium, selenium, and thallium were also diluted due to inter-element correction factors associated with manganese.

Method 6010B: The following sample was diluted due to the abundance of target analytes: B-1 (6')-11/3/11 (180-5526-3). Elevated reporting limits (RLs) are provided. The concentration of manganese in the sample was above the linear range and required dilution. Silver, chromium, selenium, and thallium were also diluted due to inter-element correction factors associated with manganese.

Method 6010B: The following sample was diluted due to the abundance of target analytes: B-2 (6')-11/2/11 (180-5526-1). Elevated reporting limits (RLs) are provided. The concentration of barium and manganese in the sample was above the linear range and required dilution. Silver, chromium, selenium, and thallium were also diluted due to inter-element correction factors associated with manganese.

General Chemistry

No analytical or quality issues were noted.

Job ID: 180-5622-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-5622-1

Receipt

TestAmerica Pittsburgh 12/14/2011

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Job ID: 180-5622-1 (Continued)

Laboratory: TestAmerica Pittsburgh (Continued)

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC/MS Semi VOA

Method 8270C: The matrix spike (MS) recoveries for batch 20532 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

GC Semi VOA

No analytical or quality issues were noted.

Metals

Method 6010B: The following sample was diluted due to the abundance of target analytes: B-5(16')-11/4/11 (180-5622-2), B-5(6')-11/4/11 (180-5622-1). Elevated reporting limits (RLs) are provided. The concentration of manganese in the sample was above the linear range and required dilution. Silver, chromium, selenium, and thallium were also diluted due to inter-element correction factors associated with manganese.

General Chemistry

No analytical or quality issues were noted.

Job ID: 180-5679-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-5679-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method 8260B: The following samples were diluted due to the abundance of target analytes: B-4W-11-8-11 (180-5679-5), B-5W-11-8-11 (180-5679-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method 8270C: The following sample was diluted due to the nature of the sample matrix: B-6 (6')-11-8-11 (180-5679-3). Elevated reporting limits (RLs) are provided.

Method 8270C: The matrix spike (MS) recoveries for batch 20532 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method 8270C: Surrogate recovery for the following sample(s) was outside control limits: B-4 (6')-11-7-11 (180-5679-1). Re-extraction and/or re-analysis was performed with concurring results. Both sets of data have been reported.

Method 8270C: The laboratory control sample (LCS) for batch 21153 exceeded control limits for the following analytes: 2-napthylamine This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8270C: No matrix spike was added to these samples. Samples require reextraction due to client requested QC.

Method 8270C LL: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for batch 20608 exceeded control limits for the following analyte: Benzaldehyde has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed.

3

7

0

10

11

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

3

Job ID: 180-5679-1 (Continued)

Laboratory: TestAmerica Pittsburgh (Continued)

Method 8270C LL: The following samples were diluted due to the abundance of target analytes: B-4W-11-8-11 (180-5679-5), B-5W-11-8-11 (180-5679-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC Semi VOA

Method 8081A: The continuing calibration verification (CCV) for d-BHC, DDD, Methoxchlor, Endrin Ketone associated with batch 22196 recovered above the upper control limit. most samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. Some samples were run multiple times each time similar issues happened to the closing CCV.

No other analytical or quality issues were noted.

Metals

Method 6010B: Due to the high concentration of calcium and sodium, the matrix spike / matrix spike duplicate (MS/MSD) for batch 180-20226 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method 6010B: The following sample was diluted due to the abundance of target analytes: B-4 (16')-11-7-11 (180-5679-2). Elevated reporting limits (RLs) are provided. The concentration of manganese in the sample was above the linear range and required dilution. Silver, chromium, selenium, and thallium were also diluted due to inter-element correction factors associated with manganese.

No other analytical or quality issues were noted.

General Chemistry

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 20377 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method 350.1: The following samples in batch 20377 were diluted due to the abundance of target analytes: B-4W-11-8-11 (180-5679-5), B-5W-11-8-11 (180-5679-4). Elevated reporting limits (RLs) are provided.

Method 7196A: The matrix soluble spike and post digestion spike (MSS/PDS) recoveries for batch 21789 were outside of control limits. The associated laboratory control sample (LCSS/LCSI) recoveries met acceptance criteria, which demonstrates that the analytical system was operating in control. This condition is most likely due to a matrix interference. An ORP was performed for sample 180-5679-a-2, and the chart is included in the report. This is the first analysis of the batch; a reanalysis will be performed in accordance with the SOP.

Method 7196A: The matrix soluble spike and post digestion spike (MSS/PDS) recoveries for batch 21877 were outside of control limits. The associated laboratory control sample (LCSS/LCSI) recoveries met acceptance criteria, which demonstrates that the analytical system was operating in control. This condition is most likely due to a matrix interference. An ORP was performed for sample 180-5679-2 and the chart is included in the report. This is the second analysis of the batch in accordance with the SOP.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Job ID: 180-5712-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-5712-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Job ID: 180-5712-1 (Continued)

Laboratory: TestAmerica Pittsburgh (Continued)

Method 8260B: The following sample was diluted due to the abundance of non-target analytes: B-1W-11-9-11 (180-5712-2). Elevated reporting limits (RLs) are provided. Batch #21590.

Method 8260B: An LCS/LCSD was run for Batch 21590 in place of an MS/MSD.

GC/MS Semi VOA

Method 8270C LL: The following sample(s) was diluted due to the abundance of target analytes: B-1W-11-9-11 (180-5712-2), B-2W-11-9-11 (180-5712-1). Elevated reporting limits (RLs) are provided.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Job ID: 180-5830-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-5830-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

The method blank had naphthalene detected between the MDL and the reporting limit. The result was flagged with a "J" qualifier. Any sample that had this compound detected had the result flagged with a "B" qualifier.

GC/MS Semi VOA

Atrazine was out of the control limits in the LCS. All other compounds were in control.

There were no other problems associated with the analysis.

Pesticides

Sample B-3(6')-11/10/11 (180-5830-1) was analyzed at a dilution due to matrix. This sample had the surrogates diluted out.

The MS/MSD of sample B-3(6')-11/10/11 (180-5830-1) had the surrogates and the spikes diluted out.

PCBs

There were no problems associated with the analysis

Herbicides

There were no problems associated with the analysis.

Metals

Sample B-3(16')-11/10/11 (180-5830-2) was over the instruments linear range for managanes and required a dilution. This sample was also analyzed at a dilution for silver, chromium, selenium, and thallium due to inter-element corrections associated with manganese. The reporting limits are adjsuted accordingly.

The method blank had analytes detected between the MDL and the reporting limit. The results were flagged with a "J" qualifier. Any

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Job ID: 180-5830-1 (Continued)

Laboratory: TestAmerica Pittsburgh (Continued)

sample that had these compounds detected had the results flagged with a "B" qualifier.

General Chemistry

Sample B-3(6')-11/10/11 (180-5830-1) was analyzed at a dilution for total cyanide.

The leach blanks had analytes detected between the MDL and the reporting limit. The results were flagged with a "J" qualifier.

The batch QC matrix spikes recovered outside of the control limits for hexavalent chromium. The associated samples were re-digested and re-analyzed. The matrix spikes again recovered outside of hte control limits confirming matrix interfernce. Both sets of results are reported.

3

4

5

6

46

11

Definitions/Glossary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
00,000	

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Χ	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
F	MS or MSD exceeds the control limits
*	RPD of the LCS and LCSD exceeds the control limits
E	Result exceeded calibration range.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
Χ	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
GC Semi VOA	A Company of the Comp

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
X	Surrogate is outside control limits
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
X	Surrogate is outside control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F	MS or MSD exceeds the control limits
F	RPD of the MS and MSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
Metals	

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

Definitions/Glossary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Qualifiers (Continued)

Metals (Continued)

Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not	_
	applicable.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F	Duplicate RPD exceeds the control limit
F	MS or MSD exceeds the control limits
HF	Field parameter with a holding time of 15 minutes
HF	Field parameter with a holding time of 15 minutes
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.		
*	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CNF	Contains no Free Liquid		
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
EDL	Estimated Detection Limit		
EPA	United States Environmental Protection Agency		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
ND	Not detected at the reporting limit (or MDL or EDL if shown)		
PQL	Practical Quantitation Limit		
RL	Reporting Limit		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		

TestAmerica Pittsburgh 12/14/2011

Certification Summary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Pittsburgh	ACLASS	DoD ELAP		ADE-1422
estAmerica Pittsburgh	Arkansas	State Program	6	88-0690
estAmerica Pittsburgh	California	NELAC	9	4224CA
estAmerica Pittsburgh	Connecticut	State Program	1	PH-0688
estAmerica Pittsburgh	Florida	NELAC	4	E871008
estAmerica Pittsburgh	Illinois	NELAC	5	002602
estAmerica Pittsburgh	Kansas	NELAC	7	E-10350
estAmerica Pittsburgh	Louisiana	NELAC	6	04041
estAmerica Pittsburgh	New Hampshire	NELAC	1	203011
estAmerica Pittsburgh	New Jersey	NELAC	2	PA005
estAmerica Pittsburgh	New York	NELAC	2	11182
estAmerica Pittsburgh	North Carolina	North Carolina DENR	4	434
estAmerica Pittsburgh	Pennsylvania	NELAC	3	02-00416
estAmerica Pittsburgh	Pennsylvania	State Program	3	02-416
estAmerica Pittsburgh	South Carolina	State Program	4	89014002
estAmerica Pittsburgh	USDA	USDA		P330-10-00139
estAmerica Pittsburgh	USDA	USDA		P-Soil-01
estAmerica Pittsburgh	Utah	NELAC	8	STLP
estAmerica Pittsburgh	Virginia	NELAC	3	460189
estAmerica Pittsburgh	West Virginia	West Virginia DEP	3	142
estAmerica Pittsburgh	Wisconsin	State Program	5	998027800
estAmerica North Canton	ACLASS	DoD ELAP		ADE-1437
estAmerica North Canton	California	NELAC	9	01144CA
estAmerica North Canton	Connecticut	State Program	1	PH-0590
estAmerica North Canton	Florida	NELAC	4	E87225
estAmerica North Canton	Georgia	Georgia EPD	4	N/A
estAmerica North Canton	Illinois	NELAC	5	200004
estAmerica North Canton	Kansas	NELAC	7	E-10336
estAmerica North Canton	Kentucky	State Program	4	58
estAmerica North Canton	Minnesota	NELAC	5	039-999-348
estAmerica North Canton	Nevada	State Program	9	OH-000482008A
estAmerica North Canton	New Jersey	NELAC	2	OH001
estAmerica North Canton	New York	NELAC	2	10975
estAmerica North Canton	Ohio	OVAP	5	CL0024
estAmerica North Canton	Pennsylvania	NELAC	3	68-00340
estAmerica North Canton	USDA	USDA		P330-11-00328
estAmerica North Canton	Virginia	NELAC Secondary AB	3	460175
estAmerica North Canton	West Virginia	West Virginia DEP	3	210
estAmerica North Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

9

3

6

8

9

10

Sample Summary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-5526-1	B-2 (6')-11/2/11	Solid	11/02/11 08:20	11/03/11 11:15
180-5526-2	B-2 (16')-11/2/11	Solid	11/02/11 08:50	11/03/11 11:15
180-5526-3	B-1 (6')-11/3/11	Solid	11/03/11 09:00	11/03/11 11:15
180-5526-4	B-1 (15')-11/3/11	Solid	11/03/11 09:50	11/03/11 11:15
180-5622-1	B-5(6')-11/4/11	Solid	11/04/11 09:00	11/04/11 13:00
180-5622-2	B-5(16')-11/4/11	Solid	11/04/11 09:30	11/04/11 13:00
180-5679-1	B-4 (6')-11-7-11	Solid	11/07/11 09:30	11/08/11 16:09
180-5679-2	B-4 (16')-11-7-11	Solid	11/07/11 10:30	11/08/11 16:09
180-5679-3	B-6 (6')-11-8-11	Solid	11/08/11 09:00	11/08/11 16:09
180-5679-4	B-5W-11-8-11	Water	11/08/11 12:30	11/08/11 16:09
180-5679-5	B-4W-11-8-11	Water	11/08/11 14:00	11/08/11 16:09
180-5712-1	B-2W-11-9-11	Water	11/09/11 12:30	11/09/11 15:19
180-5712-2	B-1W-11-9-11	Water	11/09/11 14:00	11/09/11 15:19
180-5830-1	B-3(6')-11/10/11	Solid	11/10/11 09:00	11/11/11 12:30
180-5830-2	B-3(16')-11/10/11	Solid	11/10/11 10:00	11/11/11 12:30

2

3

4

_

7

8

9

10

11

Method Summary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method Method Description Protocol Laboratory Volatile Organic Compounds (GC/MS) SW846 TAL PIT 8260B 8270C Semivolatile Organic Compounds (GC/MS) SW846 TAL PIT Semivolatile Organic Compounds by GCMS - Low Levels 8270C LL SW846 TAL PIT 8081A Organochlorine Pesticides (GC) SW846 TAL PIT 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography SW846 TAL PIT 8151A Herbicides (GC) SW846 TAL PIT Metals (ICP) 6010B SW846 TAL PIT 6010B TAL PIT Lead SW846 7470A SW846 TAL PIT Mercury (CVAA) 7471A Mercury (CVAA) SW846 TAL PIT 1664A HEM and SGT-HEM 1664A TAL PIT 350.1 Nitrogen, Ammonia MCAWW TAL PIT 410.4 MCAWW TAL PIT SW846 TAL PIT 7196A Chromium, Hexavalent 7196A Chromium, Trivalent (Colorimetric) SW846 TAL PIT 9012A Cyanide, Total and/or Amenable SW846 TAL PIT

Protocol References:

9040B

9056A

Moisture

SM 2540D

SM 4500 CN E

SM 4500 CN I

1664A = EPA-821-98-002

EPA = US Environmental Protection Agency

Anions, Ion Chromatography

Solids, Total Suspended (TSS)

Cyanide, Weak Acid Dissociable

Percent Moisture

Cyanide, Total

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TestAmerica Job ID: 180-5622-1

TAL PIT

TAL PIT

TAL PIT

TAL PIT

TAL NC

TAL NC

SW846

SW846

EPA

SM

 SM

SM

6

4

5

7

8

10

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Lab Sample ID: 180-5526-1

TestAmerica Job ID: 180-5622-1

Matrix: Solid Percent Solids: 74.7

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND *	18	4.5	ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
Benzene	ND	4.5	0.60	ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
Bromodichloromethane	ND	4.5	0.50	ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
Bromoform	ND	4.5	0.39	ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Bromomethane	ND	4.5	0.66	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
2-Butanone (MEK)	ND	4.5	0.79	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Carbon disulfide	ND	4.5	0.46	ug/Kg	φ.	11/08/11 04:08	11/08/11 09:59	1
Carbon tetrachloride	ND	4.5	0.40	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Chlorobenzene	ND	4.5		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
Chloroethane	ND	4.5	1.4	ug/Kg	-	11/08/11 04:08	11/08/11 09:59	1
Chloroform	ND	4.5	0.52	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Chloromethane	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Dibromochloromethane	ND	4.5		ug/Kg	-	11/08/11 04:08	11/08/11 09:59	1
1,1-Dichloroethane	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,2-Dichloroethane	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,1-Dichloroethene	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Acetonitrile	ND	89		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
1,2-Dichloropropane	ND	4.5		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
cis-1,3-Dichloropropene	ND	4.5		ug/Kg	-	11/08/11 04:08	11/08/11 09:59	
trans-1,3-Dichloropropene	ND	4.5		ug/Kg	*	11/08/11 04:08	11/08/11 09:59	1
Ethylbenzene	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
2-Hexanone	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	0.97 JB	4.5		ug/Kg ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
4-Methyl-2-pentanone (MIBK)	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Bromochloromethane	ND	4.5	0.61			11/08/11 04:08	11/08/11 09:59	' 1
Styrene	ND	4.5		ug/Kg ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
•	ND							1
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	4.5		ug/Kg		11/08/11 04:08 11/08/11 04:08	11/08/11 09:59	
		4.5		ug/Kg	₩		11/08/11 09:59	1
1,1,1-Trichloroethane	ND	4.5		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
1,1,2-Trichloroethane	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Trichloroethene	ND	4.5		ug/Kg	\$	11/08/11 04:08	11/08/11 09:59	1
Vinyl chloride	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Xylenes, Total	ND	13 <u>-</u>		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Cyclohexane	ND	4.5		ug/Kg	\$	11/08/11 04:08	11/08/11 09:59	1
1,2-Dibromo-3-Chloropropane	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Dichlorodifluoromethane	ND	4.5		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
cis-1,2-Dichloroethene	ND	4.5		ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
trans-1,2-Dichloroethene	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Isopropylbenzene	ND	4.5		ug/Kg	₽.	11/08/11 04:08	11/08/11 09:59	1
Methyl acetate	ND	4.5		ug/Kg	₽.	11/08/11 04:08	11/08/11 09:59	1
Methylcyclohexane	ND	4.5		ug/Kg		11/08/11 04:08	11/08/11 09:59	1
Methyl tert-butyl ether	ND	4.5		ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
Trichlorofluoromethane	ND	4.5	0.82	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	0.95	ug/Kg		11/08/11 04:08	11/08/11 09:59	1
1,2-Dichlorobenzene	ND	4.5	0.71	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,3-Dichlorobenzene	ND	4.5	0.58	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,4-Dichlorobenzene	ND	4.5	0.57	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,2,4-Trichlorobenzene	ND	4.5	0.79	ug/Kg	*	11/08/11 04:08	11/08/11 09:59	1
Toluene	ND	4.5	0.65	ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1

Client: GAI Consultants

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Project/Site: USS Clairton - C071418.13

-**,**

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

11/08/11 09:59

11/08/11 09:59

11/08/11 09:59

Matrix: Solid

Percent Solids: 74.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		4.5	0.68	ug/Kg	₩	11/08/11 04:08	11/08/11 09:59	1
1,2,3-Trichloropropane	ND		4.5	0.83	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,3,5-Trimethylbenzene	ND		4.5	0.60	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
tert-Butylbenzene	ND		4.5	0.63	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
1,2,4-Trimethylbenzene	ND		4.5	0.58	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
sec-Butylbenzene	ND		4.5	0.70	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
n-Butylbenzene	ND		4.5	0.71	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Hexachlorobutadiene	ND		4.5	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Naphthalene	1.1	JB	4.5	0.90	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Acrolein	ND		89	6.3	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Acrylonitrile	ND		89	9.2	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Methacrylonitrile	ND		4.5	0.26	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Isobutyl alcohol	ND		180	23	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Methyl methacrylate	ND		4.5	0.61	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Ethyl methacrylate	ND		4.5	0.38	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Vinyl acetate	ND		4.5	0.32	ug/Kg	₽	11/08/11 04:08	11/08/11 09:59	1
Hexane	ND		4.5	0.90	ug/Kg	\$	11/08/11 04:08	11/08/11 09:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		52 - 124				11/08/11 04:08	11/08/11 09:59	1

72 - 127

63 - 120

68 - 121

111

101

84

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.44	0.034	mg/Kg	*	11/07/11 04:22	11/09/11 00:12	1
Acenaphthene	0.034	J	0.089	0.0085	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Acetophenone	ND		0.44	0.036	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Acenaphthylene	0.022	J	0.089	0.010	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Anthracene	0.084	J	0.089	0.0087	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Benzo[a]anthracene	0.38		0.089	0.011	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Benzo[a]pyrene	0.34		0.089	0.0089	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Benzo[b]fluoranthene	0.45		0.089	0.014	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Benzo[g,h,i]perylene	0.21		0.089	0.0088	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Benzo[k]fluoranthene	0.24		0.089	0.018	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Bis(2-chloroethyl)ether	ND		0.089	0.012	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Bis(2-chloroethoxy)methane	ND		0.44	0.029	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
2,2'-oxybis[1-chloropropane]	ND		0.089	0.0096	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Bis(2-ethylhexyl) phthalate	0.080	J	0.89	0.072	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
4-Bromophenyl phenyl ether	ND		0.44	0.039	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Butyl benzyl phthalate	ND		0.44	0.061	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Carbazole	0.046	J	0.089	0.0082	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
4-Chloroaniline	ND		0.44	0.036	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
2-Chloronaphthalene	ND		0.089	0.0093	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
4-Chlorophenyl phenyl ether	ND		0.44	0.049	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Chrysene	0.37		0.089	0.011	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Dibenz(a,h)anthracene	0.071	J	0.089	0.0099	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
Di-n-butyl phthalate	ND		0.44	0.056	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	1
3,3'-Dichlorobenzidine	ND		0.44	0.047	mg/Kg	☼	11/07/11 04:22	11/09/11 00:12	1
Diethyl phthalate	ND		0.44	0.048	mg/Kg	₩.	11/07/11 04:22	11/09/11 00:12	1

_

<u>ی</u>

5

7

9

10

11

12

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1

Matrix: Solid

Percent Solids: 74.7

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dimethyl phthalate	ND		0.44	0.048	mg/Kg	\	11/07/11 04:22	11/09/11 00:12	
2,4-Dinitrotoluene	ND		0.44	0.036	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2,6-Dinitrotoluene	ND		0.44	0.046	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Di-n-octyl phthalate	ND		0.44	0.047	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Fluoranthene	0.72		0.089	0.0095	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Fluorene	0.023	J	0.089	0.012	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Hexachlorobenzene	ND		0.089	0.0095	mg/Kg	≎	11/07/11 04:22	11/09/11 00:12	
3,3'-Dimethylbenzidine	ND		2.3	0.024	mg/Kg	≎	11/07/11 04:22	11/09/11 00:12	
Hexachlorobutadiene	ND		0.089	0.0099	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Hexachlorocyclopentadiene	ND		0.44	0.048	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Hexachloroethane	ND		0.44	0.032	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Indeno[1,2,3-cd]pyrene	0.18		0.089	0.0091	mg/Kg	\$	11/07/11 04:22	11/09/11 00:12	· · · · · · · · ·
Isophorone	ND		0.44	0.033	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2-Methylnaphthalene	0.069	J	0.089	0.0080	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Naphthalene	0.073	J	0.089	0.0076	mg/Kg	ф.	11/07/11 04:22	11/09/11 00:12	
2-Nitroaniline	ND		2.3	0.20	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
3-Nitroaniline	ND		2.3	0.18	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
4-Nitroaniline	ND		2.3	0.18	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Nitrobenzene	ND		0.89	0.037	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
N-Nitrosodi-n-propylamine	ND		0.089		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
N-Nitrosodiphenylamine	ND		0.44	0.041	mg/Kg		11/07/11 04:22	11/09/11 00:12	
Phenanthrene	0.38		0.089		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Pyrene	0.51		0.089	0.0090	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
4-Chloro-3-methylphenol	ND		0.44		mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2-Chlorophenol	ND		0.44		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Aniline	ND		0.44	0.035	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2-Methylphenol	ND		0.44		mg/Kg	φ.	11/07/11 04:22	11/09/11 00:12	
Methylphenol, 3 & 4	ND		0.44	0.043	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2,4-Dichlorophenol	ND		0.089	0.0089	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
2,4-Dimethylphenol	ND		0.44	0.069	mg/Kg	φ.	11/07/11 04:22	11/09/11 00:12	
2,4-Dinitrophenol	ND		2.3	0.53	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
4,6-Dinitro-2-methylphenol	ND		2.3	0.18	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
2-Nitrophenol	ND		0.44	0.049	mg/Kg		11/07/11 04:22	11/09/11 00:12	
Benzyl alcohol	ND		0.44	0.054	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
4-Nitrophenol	ND		2.3	0.16	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Pentachlorophenol	ND		0.44		mg/Kg		11/07/11 04:22	11/09/11 00:12	
Phenol	ND		0.089		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
2,4,5-Trichlorophenol	ND		0.44		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
2,4,6-Trichlorophenol	ND		0.44		mg/Kg		11/07/11 04:22	11/09/11 00:12	· · · · · · .
1,1'-Biphenyl	ND		0.44	0.040	mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Caprolactam	ND		2.3		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Benzaldehyde	ND		0.44		mg/Kg		11/07/11 04:22	11/09/11 00:12	
Atrazine	ND '	*	0.44		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
Benzoic acid	ND		2.3		mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	
Benzidine	ND		8.9		mg/Kg		11/07/11 04:22	11/09/11 00:12	
1,4-Dioxane	ND		0.89		mg/Kg	₽	11/07/11 04:22	11/09/11 00:12	
	ND		0.44		mg/Kg	\$	11/07/11 04:22	11/09/11 00:12	
1,2-Diphenylhydrazine(as Azobenzene)	ND		VT	0.001	9,119		07.22	11700/11 00.12	
o-Toluidine	ND		0.44	0.033	mg/Kg	₩	11/07/11 04:22	11/09/11 00:12	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1

Matrix: Solid

Percent Solids: 74.7

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		25 - 104	11/07/11 04:22	11/09/11 00:12	1
2-Fluorobiphenyl	64		35 - 105	11/07/11 04:22	11/09/11 00:12	1
Terphenyl-d14	66		25 - 127	11/07/11 04:22	11/09/11 00:12	1
Phenol-d5	50		25 - 105	11/07/11 04:22	11/09/11 00:12	1
2-Fluorophenol	12	X	39 - 103	11/07/11 04:22	11/09/11 00:12	1
2,4,6-Tribromophenol	1	Χ	35 - 124	11/07/11 04:22	11/09/11 00:12	1

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.44	0.034	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
Acenaphthene	0.035	J	0.090	0.0086	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Acetophenone	ND		0.44	0.037	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Acenaphthylene	ND		0.090	0.010	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Anthracene	0.087	J	0.090	0.0087	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Benzo[a]anthracene	0.35		0.090	0.011	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Benzo[a]pyrene	0.26		0.090	0.0089	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Benzo[b]fluoranthene	0.48		0.090	0.014	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Benzo[g,h,i]perylene	0.17		0.090	0.0089	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Benzo[k]fluoranthene	ND		0.090	0.018	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Bis(2-chloroethyl)ether	ND		0.090	0.012	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Bis(2-chloroethoxy)methane	ND		0.44	0.029	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
2,2'-oxybis[1-chloropropane]	ND		0.090	0.0096	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Bis(2-ethylhexyl) phthalate	ND		0.90	0.072	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
4-Bromophenyl phenyl ether	ND		0.44	0.039	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Butyl benzyl phthalate	ND		0.44	0.061	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Carbazole	0.035	J	0.090	0.0082	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
4-Chloroaniline	ND		0.44	0.036	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
2-Chloronaphthalene	ND		0.090	0.0093	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
4-Chlorophenyl phenyl ether	ND		0.44	0.050	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Chrysene	0.28		0.090	0.011	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Dibenz(a,h)anthracene	0.034	J	0.090	0.0099	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Di-n-butyl phthalate	ND		0.44	0.056	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
3,3'-Dichlorobenzidine	ND		0.44	0.047	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Diethyl phthalate	ND		0.44	0.049	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
Dimethyl phthalate	ND		0.44	0.049	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2,4-Dinitrotoluene	ND		0.44	0.036	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2,6-Dinitrotoluene	ND		0.44	0.046	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Di-n-octyl phthalate	ND		0.44	0.047	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Fluoranthene	0.55		0.090	0.0096	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Fluorene	0.019	J	0.090	0.012	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Hexachlorobenzene	ND		0.090	0.0095	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Hexachlorobutadiene	ND		0.090	0.010	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Hexachlorocyclopentadiene	ND		0.44	0.048	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Hexachloroethane	ND		0.44	0.032	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Indeno[1,2,3-cd]pyrene	0.15		0.090	0.0092	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Isophorone	ND		0.44	0.034	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2-Methylnaphthalene	0.030	J	0.090	0.0080	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Naphthalene	0.046	J	0.090	0.0077	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2-Nitroaniline	ND		2.3	0.20	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
3-Nitroaniline	ND		2.3	0.18	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
4-Nitroaniline	ND		2.3	0.18	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1

Client: GAI Consultants

Phenol-d5

2-Fluorophenol

2,4,6-Tribromophenol

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1

Matrix: Solid

Percent Solids: 74.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrobenzene	ND ND		0.90	0.037	mg/Kg	\	11/11/11 03:04	11/11/11 18:00	1
N-Nitrosodi-n-propylamine	ND		0.090	0.010	mg/Kg		11/11/11 03:04	11/11/11 18:00	1
N-Nitrosodiphenylamine	ND		0.44	0.041	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
Phenanthrene	0.42		0.090	0.014	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Pyrene	0.50		0.090	0.0090	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
4-Chloro-3-methylphenol	ND		0.44	0.041	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2-Chlorophenol	ND		0.44	0.037	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Aniline	ND		0.44	0.035	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
2-Methylphenol	ND		0.44	0.031	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Methylphenol, 3 & 4	ND		0.44	0.044	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
2,4-Dichlorophenol	ND		0.090	0.0090	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2,4-Dimethylphenol	ND		0.44	0.070	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2,4-Dinitrophenol	ND		2.3	0.53	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
4,6-Dinitro-2-methylphenol	ND		2.3	0.18	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
2-Nitrophenol	ND		0.44	0.049	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Benzyl alcohol	ND		0.44	0.054	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
4-Nitrophenol	ND		2.3	0.16	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Pentachlorophenol	ND		0.44	0.040	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Phenol	ND		0.090	0.011	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
2,4,5-Trichlorophenol	ND		0.44	0.048	mg/Kg	₩	11/11/11 03:04	11/11/11 18:00	1
2,4,6-Trichlorophenol	ND		0.44	0.067	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
1,1'-Biphenyl	ND		0.44	0.040	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Caprolactam	ND		2.3	0.34	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Benzaldehyde	ND		0.44	0.067	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Atrazine	ND		0.44	0.043	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
Benzoic acid	ND		2.3	0.19	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Benzidine	ND		9.0	1.9	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
1,4-Dioxane	ND		0.90	0.051	mg/Kg	\$	11/11/11 03:04	11/11/11 18:00	1
1,2-Diphenylhydrazine(as	ND		0.44	0.057	mg/Kg	₽	11/11/11 03:04	11/11/11 18:00	1
Azobenzene)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		25 - 104				11/11/11 03:04	11/11/11 18:00	1
2-Fluorobiphenyl	64		35 - 105				11/11/11 03:04	11/11/11 18:00	1
Terphenyl-d14	74		25 - 127				11/11/11 03:04	11/11/11 18:00	1

Method: 8081A - Organoch	nlorine Pesticides (G	C)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0023	0.00029	mg/Kg	\$	11/07/11 04:27	11/11/11 17:02	1
4,4'-DDE	ND		0.0023	0.00033	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
4,4'-DDT	ND		0.0023	0.00033	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Aldrin	ND		0.0023	0.00040	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
alpha-BHC	ND		0.0023	0.00036	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
beta-BHC	ND		0.0023	0.00058	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
delta-BHC	ND		0.0023	0.00034	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Dieldrin	ND		0.0023	0.00037	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Endosulfan I	ND		0.0023	0.00042	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Endosulfan II	ND		0.0023	0.00039	ma/Ka		11/07/11 04:27	11/11/11 17:02	1

25 - 105

39 - 103

35 - 124

49

13 X

2 X

11/11/11 03:04

11/11/11 03:04

11/11/11 03:04

11/11/11 18:00

11/11/11 18:00

11/11/11 18:00

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15

2,4-Dichlorophenylacetic acid

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1

Matrix: Solid
Percent Solids: 74.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	ND		0.0023	0.00023	mg/Kg	\$	11/07/11 04:27	11/11/11 17:02	1
Endrin	ND		0.0023	0.00043	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
Diallate	ND		0.044	0.0037	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
gamma-BHC (Lindane)	0.00064	J p	0.0023	0.00039	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
gamma-Chlordane	ND		0.0023	0.00044	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Heptachlor	ND		0.0023	0.00049	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
Heptachlor epoxide	ND		0.0023	0.00043	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Methoxychlor	ND		0.0044	0.00046	mg/Kg	₩	11/07/11 04:27	11/11/11 17:02	1
Toxaphene	ND		0.089	0.015	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
Chlordane (technical)	ND		0.023	0.00098	mg/Kg	₽	11/07/11 04:27	11/11/11 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		45 - 130				11/07/11 04:27	11/11/11 17:02	1
Tetrachloro-m-xylene	76		45 - 130				11/07/11 04:27	11/11/11 17:02	1
DCB Decachlorobiphenyl (Surr)	79		45 - 130				11/07/11 04:27	11/11/11 17:02	1
DCB Decachlorobiphenyl (Surr)	77		45 - 130				11/07/11 04:27	11/11/11 17:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.022	0.0033	mg/Kg	*	11/07/11 04:27	11/11/11 15:59	1
PCB-1221	ND		0.022	0.0042	mg/Kg	₽	11/07/11 04:27	11/11/11 15:59	1
PCB-1232	ND		0.022	0.0038	mg/Kg	₽	11/07/11 04:27	11/11/11 15:59	1
PCB-1242	ND		0.022	0.0036	mg/Kg	₽	11/07/11 04:27	11/11/11 15:59	1
PCB-1248	ND		0.022	0.0021	mg/Kg	₽	11/07/11 04:27	11/11/11 15:59	1
PCB-1254	ND		0.022	0.0032	mg/Kg	₽	11/07/11 04:27	11/11/11 15:59	1
PCB-1260	ND		0.022	0.0032	mg/Kg	\$	11/07/11 04:27	11/11/11 15:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		35 - 140	11/07/11 04:27	11/11/11 15:59	1
DCB Decachlorobiphenyl (Surr)	85		35 - 140	11/07/11 04:27	11/11/11 15:59	1

Method: 8151A - Herbicides (G Analyte	C) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND ND	0.11	0.0073	mg/Kg	\	11/11/11 03:12	11/18/11 13:31	20
2,4,5-T	ND	0.027	0.0034	mg/Kg	☼	11/11/11 03:12	11/18/11 13:56	20
Silvex (2,4,5-TP)	ND	0.027	0.0028	mg/Kg	\$	11/11/11 03:12	11/18/11 13:56	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	45	42 - 140				11/11/11 03:12	11/18/11 13:31	20

42 - 140

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.3	0.22	mg/Kg	\	11/14/11 10:12	11/15/11 17:33	1
3.6		1.3	0.29	mg/Kg	₩	11/14/11 10:12	11/15/11 17:33	1
1500	В	130	0.33	mg/Kg	₩	11/14/11 10:12	11/16/11 11:46	5
59		26	0.34	mg/Kg	₩	11/14/11 10:12	11/15/11 17:33	1
3.1	В	0.53	0.020	mg/Kg	₩	11/14/11 10:12	11/15/11 17:33	1
0.046	J	0.66	0.032	mg/Kg	₩	11/14/11 10:12	11/15/11 17:33	1
10		3.3	0.56	mg/Kg	₽	11/14/11 10:12	11/16/11 11:46	5
0.77	J	6.6	0.12	mg/Kg	₩	11/14/11 10:12	11/15/11 17:33	1
8.5		3.3	0.45	mg/Kg	≎	11/14/11 10:12	11/15/11 17:33	1
	ND 3.6 1500 59 3.1 0.046 10	3.6 1500 B 59 3.1 B 0.046 J 10 0.77 J	ND 1.3 3.6 1.3 1500 B 130 59 26 3.1 B 0.53 0.046 J 0.66 10 3.3 0.77 J 6.6	ND 1.3 0.22 3.6 1.3 0.29 1500 B 130 0.33 59 26 0.34 3.1 B 0.53 0.020 0.046 J 0.66 0.032 10 3.3 0.56 0.77 J 6.6 0.12	ND 1.3 0.22 mg/Kg 3.6 1.3 0.29 mg/Kg 1500 B 130 0.33 mg/Kg 59 26 0.34 mg/Kg 3.1 B 0.53 0.020 mg/Kg 0.046 J 0.66 0.032 mg/Kg 10 3.3 0.56 mg/Kg 0.77 J 6.6 0.12 mg/Kg	ND 1.3 0.22 mg/Kg 3.6 1.3 0.29 mg/Kg 1500 B 130 0.33 mg/Kg 59 26 0.34 mg/Kg 3.1 B 0.53 0.020 mg/Kg 0.046 J 0.66 0.032 mg/Kg 10 3.3 0.56 mg/Kg 0.77 J 6.6 0.12 mg/Kg	ND 1.3 0.22 mg/Kg 11/14/11 10:12 3.6 1.3 0.29 mg/Kg 11/14/11 10:12 1500 B 130 0.33 mg/Kg 11/14/11 10:12 59 26 0.34 mg/Kg 11/14/11 10:12 3.1 B 0.53 0.020 mg/Kg 11/14/11 10:12 0.046 J 0.66 0.032 mg/Kg 11/14/11 10:12 10 3.3 0.56 mg/Kg 11/14/11 10:12 0.77 J 6.6 0.12 mg/Kg 11/14/11 10:12	ND 1.3 0.22 mg/Kg 11/14/11 10:12 11/15/11 17:33 3.6 1.3 0.29 mg/Kg 11/14/11 10:12 11/15/11 17:33 1500 B 130 0.33 mg/Kg 11/14/11 10:12 11/16/11 11:46 59 26 0.34 mg/Kg 11/14/11 10:12 11/15/11 17:33 3.1 B 0.53 0.020 mg/Kg 11/14/11 10:12 11/15/11 17:33 0.046 J 0.66 0.032 mg/Kg 11/14/11 10:12 11/15/11 17:33 10 3.3 0.56 mg/Kg 11/14/11 10:12 11/15/11 17:33 10 3.3 0.56 mg/Kg 11/14/11 10:12 11/16/11 11:46 0.77 J 6.6 0.12 mg/Kg 11/14/11 10:12 11/15/11 17:33

20

11/11/11 03:12 11/18/11 13:56

Client Sample ID: B-2 (6')-11/2/11

Date Collected: 11/02/11 08:20 Date Received: 11/03/11 11:15

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-1 Matrix: Solid

Percent Solids: 74.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	28		0.39	0.19	mg/Kg	₽	11/14/11 10:12	11/15/11 17:33	1
Manganese	6600	В	9.8	0.32	mg/Kg	₽	11/14/11 10:12	11/16/11 11:46	5
Nickel	4.3	J	5.3	0.50	mg/Kg	₽	11/14/11 10:12	11/15/11 17:33	1
Selenium	ND		3.3	1.4	mg/Kg	₽	11/14/11 10:12	11/16/11 11:46	5
Silver	ND		3.3	0.38	mg/Kg	₽	11/14/11 10:12	11/16/11 11:46	5
Thallium	ND		6.6	1.4	mg/Kg	₽	11/14/11 10:12	11/16/11 11:46	5
Vanadium	6.8		6.6	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 17:33	1
Zinc	17	В	2.6	0.29	mg/Kg	₽	11/14/11 10:12	11/15/11 17:33	1
Tin -	2.8	J	13	0.70	mg/Kg	₽	11/14/11 10:12	11/15/11 17:33	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.018	J	0.044	0.015	mg/Kg	*	11/14/11 03:33	11/14/11 09:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	10		0.013	0.0021	mg/Kg			11/29/11 12:19	1
Cr (VI)	0.14	J	0.53	0.13	mg/Kg	₩	11/18/11 10:00	11/22/11 15:11	1
Percent Moisture	25		0.10	0.10	%			11/03/11 16:10	1
Cyanide, Total	29		3.5	0.70	mg/Kg	₽	11/08/11 14:34	11/09/11 15:16	5
Cyanide, Weak Acid Dissociable	ND		0.67	0.21	mg/Kg	₽	11/16/11 11:49	11/16/11 15:08	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.54	0.13	mg/Kg	₩	11/22/11 13:00	11/23/11 10:11	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	72	В	25	5.5	mg/Kg			11/08/11 17:25	2.5
Nitrate as N	4.0		1.2	0.37	mg/Kg			11/08/11 17:25	2.5
Miliale as M	-1.0				0 0				

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15

Sulfate

Lab Sample ID: 180-5526-2

11/08/11 17:25

Matrix: Solid Percent Solids: 82.8

2.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	11	J *	31	7.8	ug/Kg	\$	11/08/11 04:08	11/08/11 10:44	1
Benzene	1.5	J	7.8	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Bromodichloromethane	ND		7.8	0.88	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Bromoform	ND		7.8	0.69	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Bromomethane	ND		7.8	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
2-Butanone (MEK)	ND		7.8	1.4	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Carbon disulfide	ND		7.8	0.80	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Carbon tetrachloride	ND		7.8	0.70	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Chlorobenzene	ND		7.8	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Chloroethane	ND		7.8	2.4	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Chloroform	ND		7.8	0.92	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1

25

2.9 mg/Kg

110 B

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-2

Matrix: Solid

Method: 8260B - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	ND		7.8	1.3	ug/Kg		11/08/11 04:08	11/08/11 10:44	
Dibromochloromethane	ND		7.8	1.1	ug/Kg	φ.	11/08/11 04:08	11/08/11 10:44	
1,1-Dichloroethane	ND		7.8	0.90	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,2-Dichloroethane	ND		7.8	0.96	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,1-Dichloroethene	ND		7.8	1.3	ug/Kg	φ.	11/08/11 04:08	11/08/11 10:44	
Acetonitrile	ND		160	36	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,2-Dichloropropane	ND		7.8	0.85	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
cis-1,3-Dichloropropene	ND		7.8	1.1	ug/Kg	φ.	11/08/11 04:08	11/08/11 10:44	
trans-1,3-Dichloropropene	ND		7.8	0.94	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Ethylbenzene	ND		7.8	1.0	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
2-Hexanone	ND		7.8	1.1	ug/Kg	\$	11/08/11 04:08	11/08/11 10:44	
Methylene Chloride	4.5	JB	7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
4-Methyl-2-pentanone (MIBK)	ND		7.8	1.0	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Bromochloromethane	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Styrene	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,1,2,2-Tetrachloroethane	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Tetrachloroethene	ND		7.8	1.1	ug/Kg	₩.	11/08/11 04:08	11/08/11 10:44	
1,1,1-Trichloroethane	ND		7.8	0.76	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,1,2-Trichloroethane	ND		7.8	1.3	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Trichloroethene	ND		7.8	1.0	ug/Kg	φ	11/08/11 04:08	11/08/11 10:44	
Vinyl chloride	ND		7.8	0.73	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Xylenes, Total	ND		23	3.5	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Cyclohexane	ND		7.8	0.58	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,2-Dibromo-3-Chloropropane	ND		7.8	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,2-Dibromoethane (EDB)	ND		7.8	1.4	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Dichlorodifluoromethane	ND		7.8	1.0	ug/Kg	\$	11/08/11 04:08	11/08/11 10:44	
cis-1,2-Dichloroethene	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
trans-1,2-Dichloroethene	ND		7.8	0.93	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Isopropylbenzene	ND		7.8	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Methyl acetate	ND		7.8	1.4	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Methylcyclohexane	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Methyl tert-butyl ether	ND		7.8	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Trichlorofluoromethane	ND		7.8	1.4	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7.8	1.7	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,2-Dichlorobenzene	ND		7.8	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,3-Dichlorobenzene	ND		7.8	1.0	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,4-Dichlorobenzene	ND		7.8	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,2,4-Trichlorobenzene	ND		7.8	1.4	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Toluene	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
N-Propylbenzene	ND		7.8	1.2	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,2,3-Trichloropropane	ND		7.8	1.5	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
1,3,5-Trimethylbenzene	ND		7.8	1.0	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
tert-Butylbenzene	ND		7.8	1.1	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
1,2,4-Trimethylbenzene	14		7.8	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
sec-Butylbenzene	ND		7.8	1.2	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
n-Butylbenzene	ND		7.8	1.3	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Hexachlorobutadiene	ND		7.8		ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Naphthalene	120	В	7.8	1.6	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	
Acrolein	ND		160	11	ug/Kg	₩	11/08/11 04:08	11/08/11 10:44	
Acrylonitrile	ND		160	16	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methacrylonitrile	ND		7.8	0.46	ug/Kg	\$	11/08/11 04:08	11/08/11 10:44	1
Isobutyl alcohol	ND		310	41	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Methyl methacrylate	ND		7.8	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Ethyl methacrylate	ND		7.8	0.66	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Vinyl acetate	ND		7.8	0.55	ug/Kg	₽	11/08/11 04:08	11/08/11 10:44	1
Hexane	ND		7.8	1.6	ug/Kg	\$	11/08/11 04:08	11/08/11 10:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		52 - 124				11/08/11 04:08	11/08/11 10:44	1
Toluene-d8 (Surr)	103		72 - 127				11/08/11 04:08	11/08/11 10:44	1
4-Bromofluorobenzene (Surr)	96		63 - 120				11/08/11 04:08	11/08/11 10:44	1
Dibromofluoromethane (Surr)	86		68 - 121				11/08/11 04:08	11/08/11 10:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.40	0.030	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Acenaphthene	ND		0.080	0.0077	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Acetophenone	0.057	J	0.40	0.033	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Acenaphthylene	ND		0.080	0.0092	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Anthracene	ND		0.080	0.0078	mg/Kg	≎	11/07/11 04:22	11/09/11 00:32	1
Benzo[a]anthracene	ND		0.080	0.010	mg/Kg	≎	11/07/11 04:22	11/09/11 00:32	1
Benzo[a]pyrene	ND		0.080	0.0080	mg/Kg	*	11/07/11 04:22	11/09/11 00:32	1
Benzo[b]fluoranthene	ND		0.080	0.013	mg/Kg	≎	11/07/11 04:22	11/09/11 00:32	1
Benzo[g,h,i]perylene	ND		0.080	0.0080	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Benzo[k]fluoranthene	ND		0.080	0.016	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Bis(2-chloroethyl)ether	ND		0.080	0.011	mg/Kg	≎	11/07/11 04:22	11/09/11 00:32	1
Bis(2-chloroethoxy)methane	ND		0.40	0.026	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2,2'-oxybis[1-chloropropane]	ND		0.080	0.0086	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Bis(2-ethylhexyl) phthalate	0.091	J	0.80	0.065	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
4-Bromophenyl phenyl ether	ND		0.40	0.035	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Butyl benzyl phthalate	ND		0.40	0.055	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Carbazole	ND		0.080	0.0074	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
4-Chloroaniline	ND		0.40	0.032	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2-Chloronaphthalene	ND		0.080	0.0084	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
4-Chlorophenyl phenyl ether	ND		0.40	0.044	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Chrysene	ND		0.080	0.0095	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Dibenz(a,h)anthracene	ND		0.080	0.0089	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Di-n-butyl phthalate	ND		0.40	0.050	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
3,3'-Dichlorobenzidine	ND		0.40	0.042	mg/Kg	≎	11/07/11 04:22	11/09/11 00:32	1
Diethyl phthalate	ND		0.40	0.044	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Dimethyl phthalate	ND		0.40	0.044	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2,4-Dinitrotoluene	ND		0.40	0.032	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2,6-Dinitrotoluene	ND		0.40	0.041	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Di-n-octyl phthalate	ND		0.40	0.042	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Fluoranthene	0.021	J	0.080	0.0086	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Fluorene	ND		0.080	0.011	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Hexachlorobenzene	ND		0.080	0.0085	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
3,3'-Dimethylbenzidine	ND		2.0	0.021	mg/Kg	☼	11/07/11 04:22	11/09/11 00:32	1
Hexachlorobutadiene	ND		0.080	0.0090	mg/Kg	₩.	11/07/11 04:22	11/09/11 00:32	1
Hexachlorocyclopentadiene	ND		0.40	0.043	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Hexachloroethane	ND		0.40	0.029	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15

Lab Sample ID: 180-5526-2

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 82.8

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		0.080	0.0082	mg/Kg	\	11/07/11 04:22	11/09/11 00:32	1
Isophorone	ND		0.40	0.030	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2-Methylnaphthalene	0.020	J	0.080	0.0072	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Naphthalene	0.24		0.080	0.0069	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2-Nitroaniline	ND		2.0	0.18	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
3-Nitroaniline	ND		2.0	0.16	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
4-Nitroaniline	ND		2.0	0.16	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Nitrobenzene	ND		0.80	0.033	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
N-Nitrosodi-n-propylamine	ND		0.080	0.0094	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
N-Nitrosodiphenylamine	ND		0.40	0.037	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Phenanthrene	0.021	J	0.080	0.013	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Pyrene	0.021	J	0.080	0.0081	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
4-Chloro-3-methylphenol	ND		0.40	0.037	mg/Kg		11/07/11 04:22	11/09/11 00:32	1
2-Chlorophenol	ND		0.40	0.033	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Aniline	ND		0.40	0.031	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2-Methylphenol	ND		0.40	0.028	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Methylphenol, 3 & 4	ND		0.40	0.039	mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
2,4-Dichlorophenol	ND		0.080	0.0080	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
2,4-Dimethylphenol	ND		0.40		mg/Kg		11/07/11 04:22	11/09/11 00:32	1
2,4-Dinitrophenol	ND		2.0		mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
4,6-Dinitro-2-methylphenol	ND		2.0		mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
2-Nitrophenol	ND		0.40		mg/Kg		11/07/11 04:22	11/09/11 00:32	1
Benzyl alcohol	ND		0.40	0.048	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
4-Nitrophenol	ND		2.0	0.15	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Pentachlorophenol	ND		0.40		mg/Kg		11/07/11 04:22	11/09/11 00:32	1
Phenol	ND		0.080	0.0095		₩	11/07/11 04:22	11/09/11 00:32	1
2,4,5-Trichlorophenol	ND		0.40		mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
2,4,6-Trichlorophenol	ND		0.40	0.060	mg/Kg		11/07/11 04:22	11/09/11 00:32	1
1,1'-Biphenyl	ND		0.40	0.036	mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Caprolactam	ND		2.0		mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Benzaldehyde	ND		0.40	0.060	mg/Kg		11/07/11 04:22	11/09/11 00:32	1
Atrazine	ND	*	0.40		mg/Kg	₩	11/07/11 04:22	11/09/11 00:32	1
Benzoic acid	ND		2.0		mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Benzidine	ND		8.0		mg/Kg	φ.	11/07/11 04:22	11/09/11 00:32	1
1,4-Dioxane	ND		0.80		mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
1,2-Diphenylhydrazine(as	ND		0.40		mg/Kg	₽	11/07/11 04:22	11/09/11 00:32	1
Azobenzene)									
o-Toluidine	ND		0.40	0.030	mg/Kg	\$	11/07/11 04:22	11/09/11 00:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		25 - 104				11/07/11 04:22	11/09/11 00:32	1
2-Fluorobiphenyl	70		35 - 105				11/07/11 04:22	11/09/11 00:32	1
Terphenyl-d14	72		25 - 127				11/07/11 04:22	11/09/11 00:32	1
Phenol-d5	79		25 - 105				11/07/11 04:22	11/09/11 00:32	1
2-Fluorophenol	51		39 - 103				11/07/11 04:22	11/09/11 00:32	1
2,4,6-Tribromophenol	14	X	35 - 124				11/07/11 04:22	11/09/11 00:32	1

Dil Fac

Analyzed

11/11/11 18:22

11/11/11 18:22

Prepared

11/11/11 03:04

11/11/11 03:04

₩

RL

0.40

0.080

MDL Unit

0.030 mg/Kg

0.0077 mg/Kg

Method: 8270C - Semivolatile Organic Compounds (GC/MS) - RE

Result Qualifier

ND

ND

Analyte

Acenaphthene

1,2,4,5-Tetrachlorobenzene

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-2

IVIa	trix: Solia
Percent So	olids: 82.8

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetophenone	ND ND	0.40	0.033	mg/Kg	\	11/11/11 03:04	11/11/11 18:22	
Acenaphthylene	ND	0.080	0.0092	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Anthracene	ND	0.080	0.0078	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Benzo[a]anthracene	ND	0.080	0.010	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Benzo[a]pyrene	ND	0.080	0.0080	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Benzo[b]fluoranthene	ND	0.080	0.013	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Benzo[g,h,i]perylene	ND	0.080	0.0080	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Benzo[k]fluoranthene	ND	0.080	0.016	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Bis(2-chloroethyl)ether	ND	0.080	0.011	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Bis(2-chloroethoxy)methane	ND	0.40	0.026	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
2,2'-oxybis[1-chloropropane]	ND	0.080	0.0086	mg/Kg	\$	11/11/11 03:04	11/11/11 18:22	
Bis(2-ethylhexyl) phthalate	0.076 J	0.80	0.065	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
4-Bromophenyl phenyl ether	ND	0.40	0.035	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Butyl benzyl phthalate	ND	0.40	0.055	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Carbazole	ND	0.080	0.0074	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
4-Chloroaniline	ND	0.40	0.032	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
2-Chloronaphthalene	ND	0.080	0.0084	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
4-Chlorophenyl phenyl ether	ND	0.40	0.044	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Chrysene	ND	0.080	0.0095	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Dibenz(a,h)anthracene	ND	0.080	0.0089	mg/Kg	₩.	11/11/11 03:04	11/11/11 18:22	
Di-n-butyl phthalate	ND	0.40	0.050	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
3,3'-Dichlorobenzidine	ND	0.40	0.042	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Diethyl phthalate	0.12 J	0.40	0.044	mg/Kg	\$	11/11/11 03:04	11/11/11 18:22	
Dimethyl phthalate	ND	0.40	0.044	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
2,4-Dinitrotoluene	ND	0.40	0.032	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
2,6-Dinitrotoluene	ND	0.40	0.041	mg/Kg	\$	11/11/11 03:04	11/11/11 18:22	
Di-n-octyl phthalate	ND	0.40	0.042	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Fluoranthene	0.010 J	0.080	0.0086	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Fluorene	ND	0.080	0.011	mg/Kg	\$	11/11/11 03:04	11/11/11 18:22	
Hexachlorobenzene	ND	0.080	0.0085	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Hexachlorobutadiene	ND	0.080	0.0090	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Hexachlorocyclopentadiene	ND	0.40	0.043	mg/Kg	φ.	11/11/11 03:04	11/11/11 18:22	
Hexachloroethane	ND	0.40	0.029	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Indeno[1,2,3-cd]pyrene	ND	0.080	0.0082	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	
Isophorone	ND	0.40	0.030	mg/Kg	ф -	11/11/11 03:04	11/11/11 18:22	
2-Methylnaphthalene	0.016 J	0.080	0.0072		₩	11/11/11 03:04	11/11/11 18:22	
Naphthalene	0.15	0.080	0.0069		₩	11/11/11 03:04	11/11/11 18:22	
2-Nitroaniline	ND	2.0		mg/Kg		11/11/11 03:04	11/11/11 18:22	
3-Nitroaniline	ND	2.0		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
4-Nitroaniline	ND	2.0		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Nitrobenzene	ND	0.80		mg/Kg	ф	11/11/11 03:04	11/11/11 18:22	
N-Nitrosodi-n-propylamine	ND	0.080	0.0094		₽	11/11/11 03:04	11/11/11 18:22	
N-Nitrosodiphenylamine	ND	0.40		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Phenanthrene	0.013 J	0.080		mg/Kg		11/11/11 03:04	11/11/11 18:22	
Pyrene	0.013 J	0.080	0.0081		₩	11/11/11 03:04	11/11/11 18:22	
4-Chloro-3-methylphenol	ND	0.40		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
2-Chlorophenol	ND	0.40		mg/Kg		11/11/11 03:04	11/11/11 18:22	
Aniline	ND	0.40		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
2-Methylphenol	ND	0.40		mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	
Methylphenol, 3 & 4	ND ND	0.40		mg/Kg	 \$	11/11/11 03:04	11/11/11 18:22	

Client: GAI Consultants

Benzoic acid

1,4-Dioxane

Azobenzene)

1,2-Diphenylhydrazine(as

Benzidine

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-2

11/11/11 18:22

11/11/11 18:22

11/11/11 18:22

11/11/11 18:22

Matrix: Solid

Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenol	ND		0.080	0.0080	mg/Kg	*	11/11/11 03:04	11/11/11 18:22	1
2,4-Dimethylphenol	ND		0.40	0.063	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
2,4-Dinitrophenol	ND		2.0	0.48	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
4,6-Dinitro-2-methylphenol	ND		2.0	0.16	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
2-Nitrophenol	ND		0.40	0.044	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
Benzyl alcohol	ND		0.40	0.048	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
4-Nitrophenol	ND		2.0	0.15	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
Pentachlorophenol	ND		0.40	0.036	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
Phenol	ND		0.080	0.0095	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
2,4,5-Trichlorophenol	ND		0.40	0.043	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
2,4,6-Trichlorophenol	ND		0.40	0.060	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
1,1'-Biphenyl	ND		0.40	0.036	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
Caprolactam	ND		2.0	0.30	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1
Benzaldehyde	ND		0.40	0.060	mg/Kg	₩	11/11/11 03:04	11/11/11 18:22	1
Atrazine	ND		0.40	0.039	mg/Kg	₽	11/11/11 03:04	11/11/11 18:22	1

2.0

8.0

0.80

0.40

0.17 mg/Kg

1.7 mg/Kg

0.046 mg/Kg

0.051 mg/Kg

11/11/11 03:04

11/11/11 03:04

11/11/11 03:04

11/11/11 03:04

Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69	25 - 104	11/11/11 03:04	11/11/11 18:22	1
2-Fluorobiphenyl	67	35 - 105	11/11/11 03:04	11/11/11 18:22	1
Terphenyl-d14	71	25 - 127	11/11/11 03:04	11/11/11 18:22	1
Phenol-d5	71	25 - 105	11/11/11 03:04	11/11/11 18:22	1
2-Fluorophenol	49	39 - 103	11/11/11 03:04	11/11/11 18:22	1
2,4,6-Tribromophenol	9 X	35 - 124	11/11/11 03:04	11/11/11 18:22	1

ND

ND

ND

ND

Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.0020	0.00026	mg/Kg	\	11/07/11 04:27	11/11/11 17:21	1
4,4'-DDE	ND	0.0020	0.00030	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
4,4'-DDT	ND	0.0020	0.00030	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Aldrin	ND	0.0020	0.00036	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
alpha-BHC	ND	0.0020	0.00032	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
beta-BHC	ND	0.0020	0.00052	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
delta-BHC	ND	0.0020	0.00030	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Dieldrin	ND	0.0020	0.00033	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Endosulfan I	ND	0.0020	0.00037	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Endosulfan II	ND	0.0020	0.00035	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Endosulfan sulfate	ND	0.0020	0.00021	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Endrin	ND	0.0020	0.00039	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Diallate	ND	0.039	0.0033	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
gamma-BHC (Lindane)	0.00056 Jp	0.0020	0.00035	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
gamma-Chlordane	ND	0.0020	0.00039	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Heptachlor	ND	0.0020	0.00044	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Heptachlor epoxide	ND	0.0020	0.00039	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Methoxychlor	ND	0.0039	0.00041	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Toxaphene	ND	0.080	0.013	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1
Chlordane (technical)	ND	0.020	0.00088	mg/Kg	₽	11/07/11 04:27	11/11/11 17:21	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15

2,4-Dichlorophenylacetic acid

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-2

11/11/11 03:12 11/18/11 14:21

20

Matrix: Solid

Percent Solids: 82.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73	45 - 130	11/07/11 04:27	11/11/11 17:21	1
Tetrachloro-m-xylene	74	45 - 130	11/07/11 04:27	11/11/11 17:21	1
DCB Decachlorobiphenyl (Surr)	67	45 - 130	11/07/11 04:27	11/11/11 17:21	1
DCB Decachlorobiphenyl (Surr)	66	45 - 130	11/07/11 04:27	11/11/11 17:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020	0.0030	mg/Kg	₩	11/07/11 04:27	11/11/11 16:29	1
PCB-1221	ND		0.020	0.0038	mg/Kg	₽	11/07/11 04:27	11/11/11 16:29	1
PCB-1232	ND		0.020	0.0034	mg/Kg	₽	11/07/11 04:27	11/11/11 16:29	1
PCB-1242	ND		0.020	0.0032	mg/Kg	₽	11/07/11 04:27	11/11/11 16:29	1
PCB-1248	ND		0.020	0.0019	mg/Kg	₽	11/07/11 04:27	11/11/11 16:29	1
PCB-1254	ND		0.020	0.0028	mg/Kg	₩	11/07/11 04:27	11/11/11 16:29	1
PCB-1260	ND		0.020	0.0028	mg/Kg	\$	11/07/11 04:27	11/11/11 16:29	1
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	86		35 - 140	11/07/11 04:27	11/11/11 16:29	1
DCB Decachlorobiphenyl (Surr)	77		35 - 140	11/07/11 04:27	11/11/11 16:29	1

Method: 8151A - Herbicides (C	GC)							
Analyte	Result Quali	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND ND	0.097	0.0066	mg/Kg	₽	11/11/11 03:12	11/18/11 14:21	20
2,4,5-T	ND	0.024	0.0030	mg/Kg	₽	11/11/11 03:12	11/18/11 14:21	20
Silvex (2,4,5-TP)	ND	0.024	0.0025	mg/Kg	₽	11/11/11 03:12	11/18/11 14:21	20
Surrogate	%Recovery Qual	lifier Limits				Prepared	Analyzed	Dil Fac
2.4-Dichlorophenylacetic acid	58	42 140				11/11/11 03:12	11/18/11 13:56	20

42 - 140

61

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.2	0.19	mg/Kg	<u></u>	11/14/11 10:12	11/15/11 17:39	1
Arsenic	2.8		1.2	0.26	mg/Kg	₽	11/14/11 10:12	11/15/11 17:39	1
Barium	360	В	23	0.058	mg/Kg	☼	11/14/11 10:12	11/15/11 17:39	1
Boron	87		23	0.30	mg/Kg	☼	11/14/11 10:12	11/15/11 17:39	1
Beryllium	4.7	В	0.46	0.017	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Cadmium	0.051	J	0.58	0.028	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Chromium	4.8		0.58	0.098	mg/Kg	☼	11/14/11 10:12	11/15/11 17:39	1
Cobalt	0.55	J	5.8	0.10	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Copper	5.1		2.9	0.39	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Lead	1.2		0.35	0.17	mg/Kg	₩.	11/14/11 10:12	11/15/11 17:39	1
Manganese	2000	В	1.7	0.055	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Nickel	1.8	J	4.6	0.44	mg/Kg	☼	11/14/11 10:12	11/15/11 17:39	1
Selenium	1.7		0.58	0.24	mg/Kg	\$	11/14/11 10:12	11/15/11 17:39	1
Silver	ND		0.58	0.067	mg/Kg	₽	11/14/11 10:12	11/15/11 17:39	1
Thallium	ND		1.2	0.24	mg/Kg	₩	11/14/11 10:12	11/15/11 17:39	1
Vanadium	5.6	J	5.8	0.21	mg/Kg	\$	11/14/11 10:12	11/15/11 17:39	1
Zinc	6.7	В	2.3	0.26	mg/Kg	≎	11/14/11 10:12	11/15/11 17:39	1
Tin	1.2	J	12	0.62	mg/Kg	₽	11/14/11 10:12	11/15/11 17:39	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2 (16')-11/2/11

Date Collected: 11/02/11 08:50 Date Received: 11/03/11 11:15 Lab Sample ID: 180-5526-2

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.040	0.013	mg/Kg	₩	11/14/11 03:33	11/14/11 09:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	4.8		0.013	0.0021	mg/Kg			11/29/11 12:19	1
Cr (VI)	ND		0.48	0.12	mg/Kg	₽	11/18/11 10:00	11/22/11 15:12	1
Percent Moisture	17		0.10	0.10	%			11/03/11 16:10	1
Cyanide, Total	2.2		0.63	0.13	mg/Kg	₽	11/08/11 14:34	11/09/11 15:03	1
Cyanide, Weak Acid Dissociable	ND		0.61	0.20	mg/Kg	₩	11/16/11 11:49	11/16/11 15:08	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.48	0.12	mg/Kg	<u> </u>	11/22/11 13:00	11/23/11 10:12	1

RL

9.8

0.49

0.49

98

MDL Unit

2.2 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

12 mg/Kg

D

Prepared

Result Qualifier

24

0.46 J

2200 B

0.73

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00

Date Received: 11/03/11 11:15

Analyte

Chloride

Nitrate as N

Nitrite as N

Sulfate

Lab Sample I	D: 180-5526-3
--------------	---------------

Analyzed

11/08/11 17:53

11/08/11 17:53

11/08/11 17:53

11/08/11 18:07

Dil Fac

10

Matrix: Solid Percent Solids: 88.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.6	J *	22	5.4	ug/Kg	\tilde{\	11/08/11 04:08	11/08/11 11:28	1
Benzene	ND		5.4	0.73	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Bromodichloromethane	ND		5.4	0.61	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Bromoform	ND		5.4	0.48	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Bromomethane	ND		5.4	0.80	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
2-Butanone (MEK)	ND		5.4	0.95	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Carbon disulfide	8.8		5.4	0.55	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Carbon tetrachloride	ND		5.4	0.48	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Chlorobenzene	ND		5.4	0.82	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Chloroethane	ND		5.4	1.7	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Chloroform	ND		5.4	0.63	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Chloromethane	ND		5.4	0.92	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
Dibromochloromethane	ND		5.4	0.77	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
1,1-Dichloroethane	ND		5.4	0.62	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
1,2-Dichloroethane	ND		5.4	0.66	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1
1,1-Dichloroethene	ND		5.4	0.92	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Acetonitrile	ND		110	25	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
1,2-Dichloropropane	ND		5.4	0.59	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
cis-1,3-Dichloropropene	ND		5.4	0.73	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
trans-1,3-Dichloropropene	ND		5.4	0.65	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Ethylbenzene	ND		5.4	0.70	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
2-Hexanone	ND		5.4	0.75	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	1
Methylene Chloride	2.4	JB	5.4	0.73	ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-3

Matrix: Solid

Percent Solids: 88.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Methyl-2-pentanone (MIBK)	ND		5.4	0.71	ug/Kg	\$	11/08/11 04:08	11/08/11 11:28	
Bromochloromethane	ND		5.4	0.75	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Styrene	ND		5.4	0.76	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,1,2,2-Tetrachloroethane	ND		5.4	0.78	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Tetrachloroethene	ND		5.4	0.74	ug/Kg	\$	11/08/11 04:08	11/08/11 11:28	
1,1,1-Trichloroethane	ND		5.4	0.53	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,1,2-Trichloroethane	ND		5.4	0.90	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Trichloroethene	ND		5.4	0.71	ug/Kg		11/08/11 04:08	11/08/11 11:28	
Vinyl chloride	ND		5.4	0.51	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Xylenes, Total	ND		16	2.4	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Cyclohexane	ND		5.4	0.40	ug/Kg	φ-	11/08/11 04:08	11/08/11 11:28	
1,2-Dibromo-3-Chloropropane	ND		5.4	0.81	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,2-Dibromoethane (EDB)	ND		5.4	0.93	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Dichlorodifluoromethane	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
cis-1,2-Dichloroethene	ND		5.4		ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	
trans-1,2-Dichloroethene	ND		5.4		ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	
Isopropylbenzene	ND		5.4				11/08/11 04:08	11/08/11 11:28	
Methyl acetate	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Methylcyclohexane	ND		5.4			₽	11/08/11 04:08	11/08/11 11:28	
Methyl tert-butyl ether	ND		5.4	0.81			11/08/11 04:08	11/08/11 11:28	
Trichlorofluoromethane	ND		5.4	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.4			₽	11/08/11 04:08	11/08/11 11:28	
1,2-Dichlorobenzene	ND		5.4		ug/Kg		11/08/11 04:08	11/08/11 11:28	
1,3-Dichlorobenzene	ND		5.4	0.71	ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,4-Dichlorobenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,2,4-Trichlorobenzene	ND		5.4		ug/Kg	ф	11/08/11 04:08	11/08/11 11:28	
Toluene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
N-Propylbenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,2,3-Trichloropropane	ND		5.4		ug/Kg	ф	11/08/11 04:08	11/08/11 11:28	
1,3,5-Trimethylbenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
tert-Butylbenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
1,2,4-Trimethylbenzene	ND		5.4		ug/Kg	ф	11/08/11 04:08	11/08/11 11:28	
sec-Butylbenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
n-Butylbenzene	ND		5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Hexachlorobutadiene	ND		5.4		ug/Kg	ф	11/08/11 04:08	11/08/11 11:28	
Naphthalene	19	В	5.4		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Acrolein	ND	_	110		ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Acrylonitrile	ND		110		ug/Kg	ф	11/08/11 04:08	11/08/11 11:28	
Methacrylonitrile	ND		5.4		ug/Kg ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Isobutyl alcohol	ND		220		ug/Kg ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Methyl methacrylate	ND		5.4		ug/Kg	Ф	11/08/11 04:08	11/08/11 11:28	
Ethyl methacrylate	ND		5.4		ug/Kg ug/Kg	₽	11/08/11 04:08	11/08/11 11:28	
Vinyl acetate	ND		5.4		ug/Kg ug/Kg	₩	11/08/11 04:08	11/08/11 11:28	
Hexane	ND		5.4		ug/Kg		11/08/11 04:08	11/08/11 11:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	86		52 - 124				11/08/11 04:08	11/08/11 11:28	
Toluene-d8 (Surr)	103		72 - 127				11/08/11 04:08	11/08/11 11:28	

11/08/11 04:08 11/08/11 11:28

63 - 120

68 - 121

97

85

RL

0.37

MDL Unit

mg/Kg

0.029

D

₩

Prepared

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

₩

₩

₩

Client: GAI Consultants

1,2,4,5-Tetrachlorobenzene

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

Phenanthrene

2-Chlorophenol

Pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

4-Chloro-3-methylphenol

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (6')-11/3/11

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

0.064 J

0.048

ND

ND

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-3

Analyzed

11/09/11 00:51

Matrix: Solid

Dil Fac

Percent Solids: 88.1

1,2,4,5-Tetrachioropenzene	ND	0.37	0.029	mg/Kg	**	11/07/11 04:22	11/09/11 00:51	1
Acenaphthene	0.0081	J 0.076	0.0073	mg/Kg	≎	11/07/11 04:22	11/09/11 00:51	1
Acetophenone	ND	0.37	0.031	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Acenaphthylene	ND	0.076	0.0087	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Anthracene	0.013	J 0.076	0.0074	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Benzo[a]anthracene	0.029	J 0.076	0.0095	mg/Kg	≎	11/07/11 04:22	11/09/11 00:51	1
Benzo[a]pyrene	0.032	J 0.076	0.0076	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Benzo[b]fluoranthene	0.038	J 0.076	0.012	mg/Kg	≎	11/07/11 04:22	11/09/11 00:51	1
Benzo[g,h,i]perylene	ND	0.076	0.0075	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Benzo[k]fluoranthene	ND	0.076	0.015	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Bis(2-chloroethyl)ether	ND	0.076	0.010	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Bis(2-chloroethoxy)methane	ND	0.37	0.025	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
2,2'-oxybis[1-chloropropane]	ND	0.076	0.0082	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Bis(2-ethylhexyl) phthalate	ND	0.76	0.061	mg/Kg	≎	11/07/11 04:22	11/09/11 00:51	1
4-Bromophenyl phenyl ether	ND	0.37	0.033	mg/Kg	≎	11/07/11 04:22	11/09/11 00:51	1
Butyl benzyl phthalate	ND	0.37	0.052	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Carbazole	ND	0.076	0.0070	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
4-Chloroaniline	ND	0.37	0.030	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2-Chloronaphthalene	ND	0.076	0.0079	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
4-Chlorophenyl phenyl ether	ND	0.37	0.042	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Chrysene	0.030	J 0.076	0.0090	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Dibenz(a,h)anthracene	ND	0.076	0.0084	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Di-n-butyl phthalate	ND	0.37	0.047	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
3,3'-Dichlorobenzidine	ND	0.37	0.040	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Diethyl phthalate	ND	0.37	0.041	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Dimethyl phthalate	ND	0.37	0.041	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,4-Dinitrotoluene	ND	0.37	0.031	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,6-Dinitrotoluene	ND	0.37	0.039	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Di-n-octyl phthalate	ND	0.37	0.040	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Fluoranthene	0.061	J 0.076	0.0081	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Fluorene	0.019	J 0.076	0.010	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Hexachlorobenzene	ND	0.076	0.0081	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
3,3'-Dimethylbenzidine	ND	1.9	0.020	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Hexachlorobutadiene	ND	0.076	0.0085	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Hexachlorocyclopentadiene	ND	0.37	0.041	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Hexachloroethane	ND	0.37	0.027	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Indeno[1,2,3-cd]pyrene	ND	0.076	0.0078	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
Isophorone	ND	0.37	0.029	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2-Methylnaphthalene	0.014	J 0.076	0.0068	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

11/09/11 00:51

0.076

1.9

1.9

1.9

0.76

0.076

0.37

0.076

0.076

0.37

0.37

0.0065 mg/Kg

0.17 mg/Kg

0.16 mg/Kg

0.032 mg/Kg

0.0089 mg/Kg

0.035 mg/Kg

0.012 mg/Kg

0.0077 mg/Kg

0.035 mg/Kg

0.031 mg/Kg

mg/Kg

0.15

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aniline	ND		0.37	0.029	mg/Kg	*	11/07/11 04:22	11/09/11 00:51	1
2-Methylphenol	ND		0.37	0.026	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Methylphenol, 3 & 4	ND		0.37	0.037	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,4-Dichlorophenol	ND		0.076	0.0076	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
2,4-Dimethylphenol	ND		0.37	0.059	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,4-Dinitrophenol	ND		1.9	0.45	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
4,6-Dinitro-2-methylphenol	ND		1.9	0.15	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2-Nitrophenol	ND		0.37	0.042	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Benzyl alcohol	ND		0.37	0.046	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
4-Nitrophenol	ND		1.9	0.14	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Pentachlorophenol	ND		0.37	0.034	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Phenol	ND		0.076	0.0089	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,4,5-Trichlorophenol	ND		0.37	0.040	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
2,4,6-Trichlorophenol	ND		0.37	0.057	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
1,1'-Biphenyl	ND		0.37	0.034	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Caprolactam	ND		1.9	0.29	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Benzaldehyde	ND		0.37	0.057	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1
Atrazine	ND	*	0.37	0.037	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Benzoic acid	ND		1.9	0.16	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
Benzidine	ND		7.6	1.6	mg/Kg	\$	11/07/11 04:22	11/09/11 00:51	1
1,4-Dioxane	ND		0.76	0.043	mg/Kg	₩	11/07/11 04:22	11/09/11 00:51	1
1,2-Diphenylhydrazine(as	ND		0.37	0.048	mg/Kg	☼	11/07/11 04:22	11/09/11 00:51	1
Azobenzene)									
o-Toluidine	ND		0.37	0.028	mg/Kg	₽	11/07/11 04:22	11/09/11 00:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78		25 - 104	11/07/11 04:22	11/09/11 00:51	1
2-Fluorobiphenyl	73		35 - 105	11/07/11 04:22	11/09/11 00:51	1
Terphenyl-d14	75		25 - 127	11/07/11 04:22	11/09/11 00:51	1
Phenol-d5	87		25 - 105	11/07/11 04:22	11/09/11 00:51	1
2-Fluorophenol	70		39 - 103	11/07/11 04:22	11/09/11 00:51	1
2,4,6-Tribromophenol	20	X	35 - 124	11/07/11 04:22	11/09/11 00:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.37	0.029	mg/Kg	-	11/11/11 03:04	11/11/11 18:45	1
Acenaphthene	0.011	J	0.076	0.0073	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Acetophenone	ND		0.37	0.031	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Acenaphthylene	ND		0.076	0.0087	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Anthracene	0.020	J	0.076	0.0074	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Benzo[a]anthracene	0.046	J	0.076	0.0095	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
Benzo[a]pyrene	0.039	J	0.076	0.0076	mg/Kg	\$	11/11/11 03:04	11/11/11 18:45	1
Benzo[b]fluoranthene	0.057	J	0.076	0.012	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
Benzo[g,h,i]perylene	0.022	J	0.076	0.0075	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Benzo[k]fluoranthene	ND		0.076	0.015	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Bis(2-chloroethyl)ether	ND		0.076	0.010	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
Bis(2-chloroethoxy)methane	ND		0.37	0.025	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
2,2'-oxybis[1-chloropropane]	ND		0.076	0.0082	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Bis(2-ethylhexyl) phthalate	ND		0.76	0.061	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
4-Bromophenyl phenyl ether	ND		0.37	0.033	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
Butyl benzyl phthalate	ND		0.37	0.052	mg/Kg	₩.	11/11/11 03:04	11/11/11 18:45	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-3

Matrix: Solid

Percent S

iation oona	
Solids: 88.1	

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Carbazole	0.014	J	0.076	0.0070	mg/Kg	*	11/11/11 03:04	11/11/11 18:45	•
4-Chloroaniline	ND		0.37	0.030	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2-Chloronaphthalene	ND		0.076	0.0079	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	•
4-Chlorophenyl phenyl ether	ND		0.37	0.042	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	•
Chrysene	0.033	J	0.076	0.0090	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	•
Dibenz(a,h)anthracene	ND		0.076	0.0084	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	•
Di-n-butyl phthalate	ND		0.37	0.047	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	•
3,3'-Dichlorobenzidine	ND		0.37	0.040	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	•
Diethyl phthalate	ND		0.37	0.041	0 0	₩	11/11/11 03:04	11/11/11 18:45	
Dimethyl phthalate	ND		0.37	0.041	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2,4-Dinitrotoluene	ND		0.37	0.031	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2,6-Dinitrotoluene	ND		0.37	0.039	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Di-n-octyl phthalate	ND		0.37	0.040	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Fluoranthene	0.070	J	0.076	0.0081	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Fluorene	0.013	J	0.076	0.010	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Hexachlorobenzene	ND		0.076	0.0081	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Hexachlorobutadiene	ND		0.076	0.0085	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Hexachlorocyclopentadiene	ND		0.37	0.041	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Hexachloroethane	ND		0.37	0.027	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Indeno[1,2,3-cd]pyrene	0.019	J	0.076	0.0078	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Isophorone	ND		0.37	0.029	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2-Methylnaphthalene	0.011	J	0.076	0.0068	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Naphthalene	0.021	J	0.076	0.0065	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2-Nitroaniline	ND		1.9	0.17	mg/Kg	₩.	11/11/11 03:04	11/11/11 18:45	
3-Nitroaniline	ND		1.9	0.16	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
4-Nitroaniline	ND		1.9	0.15	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Nitrobenzene	ND		0.76	0.032	mg/Kg		11/11/11 03:04	11/11/11 18:45	
N-Nitrosodi-n-propylamine	ND		0.076	0.0089	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
N-Nitrosodiphenylamine	ND		0.37	0.035	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Phenanthrene	0.097		0.076		mg/Kg	φ.	11/11/11 03:04	11/11/11 18:45	
Pyrene	0.072	J	0.076	0.0077	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
4-Chloro-3-methylphenol	ND		0.37		mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2-Chlorophenol	ND		0.37	0.031	mg/Kg		11/11/11 03:04	11/11/11 18:45	
Aniline	ND		0.37	0.029	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
2-Methylphenol	ND		0.37	0.026	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	
Methylphenol, 3 & 4	ND		0.37		mg/Kg		11/11/11 03:04	11/11/11 18:45	
2,4-Dichlorophenol	ND		0.076	0.0076		₽	11/11/11 03:04	11/11/11 18:45	
2,4-Dimethylphenol	ND		0.37		mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
2,4-Dinitrophenol	ND		1.9		mg/Kg		11/11/11 03:04	11/11/11 18:45	
4,6-Dinitro-2-methylphenol	ND		1.9		mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
2-Nitrophenol	ND		0.37		mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Benzyl alcohol	ND		0.37		mg/Kg	φ.	11/11/11 03:04	11/11/11 18:45	
4-Nitrophenol	ND		1.9		mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Pentachlorophenol	ND		0.37		mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
Phenol	ND		0.076	0.0089	. .		11/11/11 03:04	11/11/11 18:45	
2,4,5-Trichlorophenol	ND		0.37	0.040		₽	11/11/11 03:04	11/11/11 18:45	
2,4,6-Trichlorophenol	ND ND		0.37	0.040	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	
1,1'-Biphenyl	ND		0.37	0.037		 \$	11/11/11 03:04	11/11/11 18:45	
• •	ND ND			0.034		₩			
Caprolactam Benzaldehyde	ND ND		1.9 0.37		mg/Kg mg/Kg	₩	11/11/11 03:04 11/11/11 03:04	11/11/11 18:45 11/11/11 18:45	•

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 Lab Sample ID: 180-5526-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Atrazine	ND		0.37	0.037	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Benzoic acid	ND		1.9	0.16	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
Benzidine	ND		7.6	1.6	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
1,4-Dioxane	ND		0.76	0.043	mg/Kg	₽	11/11/11 03:04	11/11/11 18:45	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.37	0.048	mg/Kg	₩	11/11/11 03:04	11/11/11 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	66		25 - 104				11/11/11 03:04	11/11/11 18:45	1
2-Fluorobiphenyl	68		35 - 105				11/11/11 03:04	11/11/11 18:45	1
Terphenyl-d14	76		25 - 127				11/11/11 03:04	11/11/11 18:45	1
Phenol-d5	76		25 - 105				11/11/11 03:04	11/11/11 18:45	1
2-Fluorophenol	69		39 - 103				11/11/11 03:04	11/11/11 18:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0019	0.00024	mg/Kg	\$	11/07/11 04:27	11/11/11 17:40	1
4,4'-DDE	ND		0.0019	0.00028	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
4,4'-DDT	ND		0.0019	0.00028	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Aldrin	ND		0.0019	0.00033	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
alpha-BHC	ND		0.0019	0.00030	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
beta-BHC	ND		0.0019	0.00048	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
delta-BHC	ND		0.0019	0.00029	mg/Kg	\$	11/07/11 04:27	11/11/11 17:40	1
Dieldrin	ND		0.0019	0.00031	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Endosulfan I	ND		0.0019	0.00035	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Endosulfan II	ND		0.0019	0.00033	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Endosulfan sulfate	ND		0.0019	0.00019	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Endrin	ND		0.0019	0.00036	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Diallate	ND		0.037	0.0031	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
gamma-BHC (Lindane)	0.00091	J p	0.0019	0.00033	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
gamma-Chlordane	ND		0.0019	0.00037	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Heptachlor	ND		0.0019	0.00042	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Heptachlor epoxide	ND		0.0019	0.00036	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Methoxychlor	ND		0.0037	0.00039	mg/Kg	₩	11/07/11 04:27	11/11/11 17:40	1
Toxaphene	ND		0.075	0.012	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Chlordane (technical)	ND		0.019	0.00082	mg/Kg	₽	11/07/11 04:27	11/11/11 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
	Tetrachloro-m-xylene	82		45 - 130	_	11/07/11 04:27	11/11/11 17:40	1	
ı	Tetrachloro-m-xylene	83		45 - 130		11/07/11 04:27	11/11/11 17:40	1	
ı	DCB Decachlorobiphenyl (Surr)	84		45 - 130		11/07/11 04:27	11/11/11 17:40	1	
	DCB Decachlorobiphenyl (Surr)	83		45 - 130		11/07/11 04:27	11/11/11 17:40	1	

Method: 8082 - Polychlori	nated Biphenyls (PCE	Bs) by Gas Cl	hromatograpi	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	-	0.019	0.0028	mg/Kg	\$	11/07/11 04:27	11/11/11 16:58	1
PCB-1221	ND		0.019	0.0036	mg/Kg	₽	11/07/11 04:27	11/11/11 16:58	1
PCB-1232	ND		0.019	0.0032	mg/Kg	₩	11/07/11 04:27	11/11/11 16:58	1
PCB-1242	ND		0.019	0.0030	mg/Kg	₽	11/07/11 04:27	11/11/11 16:58	1
PCB-1248	ND		0.019	0.0018	mg/Kg	₽	11/07/11 04:27	11/11/11 16:58	1

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-3

Matrix: Soli	d
Percent Solids: 88.	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		0.019	0.0027	mg/Kg	\$	11/07/11 04:27	11/11/11 16:58	1
PCB-1260	ND		0.019	0.0027	mg/Kg	\$	11/07/11 04:27	11/11/11 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91		35 - 140				11/07/11 04:27	11/11/11 16:58	1
DCB Decachlorobiphenyl (Surr)	90		35 - 140				11/07/11 04:27	11/11/11 16:58	1
Method: 8151A - Herbicides (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.090	0.0062	mg/Kg	<u> </u>	11/11/11 03:12	11/18/11 14:45	20
2,4,5-T	ND		0.023	0.0028	mg/Kg	₽	11/11/11 03:12	11/18/11 14:45	20
Silvex (2,4,5-TP)	ND		0.023	0.0024	mg/Kg	₽	11/11/11 03:12	11/18/11 14:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	54		42 - 140				11/11/11 03:12	11/18/11 14:21	20
2,4-Dichlorophenylacetic acid	50		42 - 140				11/11/11 03:12	11/18/11 14:45	20
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		11	0.18	ma/Ka		11/1//11 10:12	11/15/11 17:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1	0.18	mg/Kg	₩	11/14/11 10:12	11/15/11 17:45	1
Arsenic	1.0	J	1.1	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Barium	320	В	22	0.055	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Boron	110		22	0.28	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Beryllium	5.3	В	0.44	0.016	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Cadmium	ND		0.55	0.026	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Chromium	1.8		1.1	0.19	mg/Kg	₽	11/14/11 10:12	11/16/11 11:52	2
Cobalt	ND		5.5	0.097	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Copper	1.9	J	2.7	0.37	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Lead	0.25	J	0.33	0.16	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Manganese	3100	В	3.3	0.10	mg/Kg	₽	11/14/11 10:12	11/16/11 11:52	2
Nickel	ND		4.4	0.42	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Selenium	3.0		1.1	0.45	mg/Kg	*	11/14/11 10:12	11/16/11 11:52	2
Silver	ND		1.1	0.13	mg/Kg	₽	11/14/11 10:12	11/16/11 11:52	2
Thallium	ND		2.2	0.45	mg/Kg	₽	11/14/11 10:12	11/16/11 11:52	2
Vanadium	2.8	J	5.5	0.20	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Zinc	1.6	JB	2.2	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 17:45	1
Tin	1.0	J	11	0.59	mg/Kg	₩	11/14/11 10:12	11/15/11 17:45	1

Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.035	0.012	mg/Kg	<u> </u>	11/15/11 03:50	11/15/11 10:53	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	1.8		0.013	0.0021	mg/Kg			11/29/11 12:19	1
Cr (VI)	ND		0.45	0.11	mg/Kg	₩	11/18/11 10:00	11/22/11 15:13	1
Percent Moisture	12		0.10	0.10	%			11/03/11 16:10	1
Cyanide, Total	0.23	J	0.59	0.12	mg/Kg	\$	11/08/11 14:34	11/09/11 15:03	1
Cyanide, Weak Acid Dissociable	ND		0.59	0.19	mg/Kg	₽	11/16/11 11:49	11/16/11 15:08	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

. reject oner des diameter der i i i i i i i

Client Sample ID: B-1 (6')-11/3/11

Date Collected: 11/03/11 09:00 Date Received: 11/03/11 11:15 Lab Sample ID: 180-5526-3

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 88.1

General Chemistry - RE								
Analyte	Result C	Qualifier !	RL MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND	0.	15 0.1	mg/Kg	-	11/22/11 13:00	11/23/11 10:13	1

(General Chemistry - Soluble									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
7	Chloride	21	В	10	2.2	mg/Kg			11/08/11 18:21	1
1	Nitrate as N	1.8		0.50	0.15	mg/Kg			11/08/11 18:21	1
1	Nitrite as N	1.1		0.50	0.16	mg/Kg			11/08/11 18:21	1
Ŀ	Sulfate	180	В	10	1.2	mg/Kg			11/08/11 18:21	1

Client Sample ID: B-1 (15')-11/3/11 Lab Sample ID: 180-5526-4

Date Collected: 11/03/11 09:50

Matrix: Solid

Date Received: 11/03/11 11:15

Percent Solids: 86.6

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	*	24	6.1	ug/Kg	₩	11/08/11 04:08	11/08/11 12:12	1
Benzene	ND		6.1	0.82	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Bromodichloromethane	ND		6.1	0.69	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Bromoform	ND		6.1	0.54	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
Bromomethane	ND		6.1	0.90	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
2-Butanone (MEK)	ND		6.1	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Carbon disulfide	ND		6.1	0.63	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
Carbon tetrachloride	ND		6.1	0.55	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Chlorobenzene	ND		6.1	0.93	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Chloroethane	ND		6.1	1.9	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Chloroform	ND		6.1	0.71	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Chloromethane	ND		6.1	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Dibromochloromethane	ND		6.1	0.87	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,1-Dichloroethane	ND		6.1	0.70	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2-Dichloroethane	ND		6.1	0.75	ug/Kg	☼	11/08/11 04:08	11/08/11 12:12	1
1,1-Dichloroethene	ND		6.1	1.0	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Acetonitrile	ND		120	28	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2-Dichloropropane	ND		6.1	0.66	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
cis-1,3-Dichloropropene	ND		6.1	0.83	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
trans-1,3-Dichloropropene	ND		6.1	0.73	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Ethylbenzene	ND		6.1	0.78	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
2-Hexanone	ND		6.1	0.84	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Methylene Chloride	3.8	JB	6.1	0.82	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
4-Methyl-2-pentanone (MIBK)	ND		6.1	0.80	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Bromochloromethane	ND		6.1	0.84	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Styrene	ND		6.1	0.86	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,1,2,2-Tetrachloroethane	ND		6.1	0.88	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Tetrachloroethene	ND		6.1	0.83	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,1,1-Trichloroethane	ND		6.1	0.59	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,1,2-Trichloroethane	ND		6.1	1.0	ug/Kg	☼	11/08/11 04:08	11/08/11 12:12	1
Trichloroethene	ND		6.1	0.80	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Vinyl chloride	ND		6.1	0.57	ug/Kg	₩	11/08/11 04:08	11/08/11 12:12	1
Xylenes, Total	ND		18	2.7	ug/Kg	☼	11/08/11 04:08	11/08/11 12:12	1
Cyclohexane	ND		6.1	0.45	ug/Kg	₩	11/08/11 04:08	11/08/11 12:12	1
1,2-Dibromo-3-Chloropropane	ND		6.1	0.91	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (15')-11/3/11

Date Collected: 11/03/11 09:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		6.1	1.1	ug/Kg	<u> </u>	11/08/11 04:08	11/08/11 12:12	1
Dichlorodifluoromethane	ND		6.1	0.81	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
cis-1,2-Dichloroethene	ND		6.1	0.86	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
trans-1,2-Dichloroethene	ND		6.1	0.73	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Isopropylbenzene	ND		6.1	0.83	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Methyl acetate	ND		6.1	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Methylcyclohexane	ND		6.1	0.89	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Methyl tert-butyl ether	ND		6.1	0.91	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
Trichlorofluoromethane	ND		6.1	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.1	1.3	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2-Dichlorobenzene	ND		6.1	0.97	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,3-Dichlorobenzene	ND		6.1	0.80	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,4-Dichlorobenzene	ND		6.1	0.78	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2,4-Trichlorobenzene	ND		6.1	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Toluene	ND		6.1	0.89	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
N-Propylbenzene	ND		6.1	0.93	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2,3-Trichloropropane	ND		6.1	1.1	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,3,5-Trimethylbenzene	ND		6.1	0.82	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
tert-Butylbenzene	ND		6.1	0.86	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
1,2,4-Trimethylbenzene	ND		6.1	0.79	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
sec-Butylbenzene	ND		6.1	0.96	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
n-Butylbenzene	ND		6.1	0.98	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Hexachlorobutadiene	ND		6.1	1.4	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
Naphthalene	1.5	J B	6.1	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Acrolein	ND		120	8.6	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Acrylonitrile	ND		120	13	ug/Kg	\$	11/08/11 04:08	11/08/11 12:12	1
Methacrylonitrile	ND		6.1	0.36	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Isobutyl alcohol	ND		240	32	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Methyl methacrylate	ND		6.1	0.84	ug/Kg		11/08/11 04:08	11/08/11 12:12	1
Ethyl methacrylate	ND		6.1	0.52	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Vinyl acetate	ND		6.1	0.43	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Hexane	5.5	J	6.1	1.2	ug/Kg	₽	11/08/11 04:08	11/08/11 12:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	82		52 - 124				11/08/11 04:08	11/08/11 12:12	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	52 - 124	11/08/11 04:08	11/08/11 12:12	1
Toluene-d8 (Surr)	107	72 - 127	11/08/11 04:08	11/08/11 12:12	1
4-Bromofluorobenzene (Surr)	94	63 - 120	11/08/11 04:08	11/08/11 12:12	1
Dibromofluoromethane (Surr)	93	68 - 121	11/08/11 04:08	11/08/11 12:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.38	0.029	mg/Kg	*	11/07/11 04:22	11/09/11 01:11	1
Acenaphthene	ND		0.077	0.0074	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Acetophenone	ND		0.38	0.031	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Acenaphthylene	ND		0.077	0.0088	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Anthracene	ND		0.077	0.0075	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzo[a]anthracene	0.011	J	0.077	0.0096	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	1
Benzo[a]pyrene	ND		0.077	0.0077	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzo[b]fluoranthene	ND		0.077	0.012	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzo[g,h,i]perylene	ND		0.077	0.0076	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzo[k]fluoranthene	ND		0.077	0.015	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (15')-11/3/11

Date Collected: 11/03/11 09:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Bis(2-chloroethyl)ether	ND		0.077	0.010	mg/Kg	<u> </u>	11/07/11 04:22	11/09/11 01:11	
Bis(2-chloroethoxy)methane	ND		0.38	0.025	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2,2'-oxybis[1-chloropropane]	ND		0.077	0.0083	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
Bis(2-ethylhexyl) phthalate	ND		0.77	0.062	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
4-Bromophenyl phenyl ether	ND		0.38	0.033	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
Butyl benzyl phthalate	ND		0.38	0.052	mg/Kg		11/07/11 04:22	11/09/11 01:11	
Carbazole	ND		0.077	0.0071	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
4-Chloroaniline	ND		0.38	0.031	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
2-Chloronaphthalene	ND		0.077	0.0080	mg/Kg		11/07/11 04:22	11/09/11 01:11	
4-Chlorophenyl phenyl ether	ND		0.38		mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
Chrysene	ND		0.077	0.0091		₽	11/07/11 04:22	11/09/11 01:11	
Dibenz(a,h)anthracene	ND		0.077	0.0085			11/07/11 04:22	11/09/11 01:11	
Di-n-butyl phthalate	ND		0.38		mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
3,3'-Dichlorobenzidine	ND		0.38		mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
Diethyl phthalate	ND		0.38		mg/Kg		11/07/11 04:22	11/09/11 01:11	
Dimethyl phthalate	ND		0.38		mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2,4-Dinitrotoluene	ND		0.38	0.031		₩	11/07/11 04:22	11/09/11 01:11	
2,6-Dinitrotoluene	ND		0.38		mg/Kg	 Ф	11/07/11 04:22	11/09/11 01:11	
Di-n-octyl phthalate	ND		0.38			₽	11/07/11 04:22	11/09/11 01:11	
• •	0.015		0.077	0.0082		₽	11/07/11 04:22	11/09/11 01:11	
Fluoranthene Fluorene	0.019 ND		0.077		mg/Kg		11/07/11 04:22	11/09/11 01:11	
Hexachlorobenzene	ND ND		0.077	0.010			11/07/11 04:22	11/09/11 01:11	
	ND ND		2.0		mg/Kg		11/07/11 04:22		
3,3'-Dimethylbenzidine								11/09/11 01:11	
Hexachlorobutadiene	ND		0.077	0.0086		₩	11/07/11 04:22	11/09/11 01:11	
Hexachlorocyclopentadiene	ND		0.38	0.041	0 0	₩	11/07/11 04:22	11/09/11 01:11	
Hexachloroethane	ND		0.38		mg/Kg		11/07/11 04:22	11/09/11 01:11	
Indeno[1,2,3-cd]pyrene	ND		0.077	0.0079			11/07/11 04:22	11/09/11 01:11	
Isophorone	ND		0.38	0.029	mg/Kg	‡	11/07/11 04:22	11/09/11 01:11	
2-Methylnaphthalene	0.050		0.077	0.0069			11/07/11 04:22	11/09/11 01:11	
Naphthalene	0.075	J	0.077	0.0066		*	11/07/11 04:22	11/09/11 01:11	
2-Nitroaniline	ND		2.0	0.17		₩.	11/07/11 04:22	11/09/11 01:11	
3-Nitroaniline	ND		2.0		mg/Kg		11/07/11 04:22	11/09/11 01:11	
4-Nitroaniline	ND		2.0		mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
Nitrobenzene	ND		0.77		mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
N-Nitrosodi-n-propylamine	ND		0.077	0.0090			11/07/11 04:22	11/09/11 01:11	
N-Nitrosodiphenylamine	ND		0.38		mg/Kg	*	11/07/11 04:22	11/09/11 01:11	
Phenanthrene	0.027	J	0.077		mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
Pyrene	0.011	J	0.077	0.0077			11/07/11 04:22	11/09/11 01:11	
4-Chloro-3-methylphenol	ND		0.38	0.035	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2-Chlorophenol	ND		0.38	0.031	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
Aniline	ND		0.38	0.030	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2-Methylphenol	ND		0.38	0.027	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
Methylphenol, 3 & 4	ND		0.38	0.037	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2,4-Dichlorophenol	ND		0.077	0.0077	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2,4-Dimethylphenol	ND		0.38	0.060	mg/Kg		11/07/11 04:22	11/09/11 01:11	
2,4-Dinitrophenol	ND		2.0	0.46	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
4,6-Dinitro-2-methylphenol	ND		2.0	0.15	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	
2-Nitrophenol	ND		0.38	0.042	mg/Kg		11/07/11 04:22	11/09/11 01:11	
Benzyl alcohol	ND		0.38	0.046	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	
4-Nitrophenol	ND		2.0		mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (15')-11/3/11

Date Collected: 11/03/11 09:50 Date Received: 11/03/11 11:15 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5526-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		0.38	0.034	mg/Kg	₩	11/07/11 04:22	11/09/11 01:11	1
Phenol	ND		0.077	0.0090	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
2,4,5-Trichlorophenol	ND		0.38	0.041	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
2,4,6-Trichlorophenol	ND		0.38	0.057	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
1,1'-Biphenyl	ND		0.38	0.034	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Caprolactam	ND		2.0	0.29	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzaldehyde	ND		0.38	0.057	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Atrazine	ND	*	0.38	0.037	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzoic acid	ND		2.0	0.16	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
Benzidine	ND		7.7	1.6	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
1,4-Dioxane	ND		0.77	0.044	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.38	0.049	mg/Kg	₽	11/07/11 04:22	11/09/11 01:11	1
o-Toluidine	ND		0.38	0.028	mg/Kg	*	11/07/11 04:22	11/09/11 01:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		25 - 104				11/07/11 04:22	11/09/11 01:11	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		25 - 104	11/07/11 04.	22 11/09/11 01:11	1
2-Fluorobiphenyl	76		35 - 105	11/07/11 04.	22 11/09/11 01:11	1
Terphenyl-d14	78		25 - 127	11/07/11 04.	22 11/09/11 01:11	1
Phenol-d5	87		25 - 105	11/07/11 04.	22 11/09/11 01:11	1
2-Fluorophenol	73		39 - 103	11/07/11 04.	22 11/09/11 01:11	1
2,4,6-Tribromophenol	71		35 - 124	11/07/11 04.	22 11/09/11 01:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0019	0.00025	mg/Kg	*	11/07/11 04:27	11/11/11 17:59	1
4,4'-DDE	ND		0.0019	0.00029	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
4,4'-DDT	ND		0.0019	0.00028	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
Aldrin	ND		0.0019	0.00034	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
alpha-BHC	ND		0.0019	0.00031	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
beta-BHC	ND		0.0019	0.00049	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
delta-BHC	0.00053	J p	0.0019	0.00029	mg/Kg	*	11/07/11 04:27	11/11/11 17:59	1
Dieldrin	ND		0.0019	0.00032	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
Endosulfan I	ND		0.0019	0.00036	mg/Kg	₩	11/07/11 04:27	11/11/11 17:59	1
Endosulfan II	ND		0.0019	0.00034	mg/Kg	*	11/07/11 04:27	11/11/11 17:59	1
Endosulfan sulfate	ND		0.0019	0.00020	mg/Kg	₩	11/07/11 04:27	11/11/11 17:59	1
Endrin	ND		0.0019	0.00037	mg/Kg	₩	11/07/11 04:27	11/11/11 17:59	1
Diallate	ND		0.038	0.0032	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
gamma-BHC (Lindane)	ND		0.0019	0.00033	mg/Kg	₩	11/07/11 04:27	11/11/11 17:59	1
gamma-Chlordane	ND		0.0019	0.00037	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
Heptachlor	ND		0.0019	0.00042	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
Heptachlor epoxide	ND		0.0019	0.00037	mg/Kg	₩	11/07/11 04:27	11/11/11 17:59	1
Methoxychlor	ND		0.0038	0.00040	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
Toxaphene	ND		0.076	0.013	mg/Kg	*	11/07/11 04:27	11/11/11 17:59	1
Chlordane (technical)	ND		0.019	0.00084	mg/Kg	₽	11/07/11 04:27	11/11/11 17:59	1
0	0/5	O !!!!!	1 : : 4				Dramavad	Amalumad	D# 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac	
Tetrachloro-m-xylene	75		45 - 130	11/07/11 04:27	11/11/11 17:59	1	
Tetrachloro-m-xylene	80		45 - 130	11/07/11 04:27	11/11/11 17:59	1	
DCB Decachlorobiphenyl (Surr)	83		45 - 130	11/07/11 04:27	11/11/11 17:59	1	
DCB Decachlorobiphenyl (Surr)	85		45 - 130	11/07/11 04:27	11/11/11 17:59	1	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (15')-11/3/11

Date Collected: 11/03/11 09:50 Date Received: 11/03/11 11:15

2,4-Dichlorophenylacetic acid

Mercury

TestAmerica Job ID: 180-5622-1

11/11/11 03:12

11/15/11 03:50

11/18/11 16:23

20

Lab Sample ID: 180-5526-4 Matrix: Solid

Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.019	0.0028	mg/Kg	*	11/07/11 04:27	11/11/11 17:28	1
PCB-1221	ND		0.019	0.0036	mg/Kg	₽	11/07/11 04:27	11/11/11 17:28	1
PCB-1232	ND		0.019	0.0033	mg/Kg	₽	11/07/11 04:27	11/11/11 17:28	1
PCB-1242	ND		0.019	0.0031	mg/Kg	₽	11/07/11 04:27	11/11/11 17:28	1
PCB-1248	ND		0.019	0.0018	mg/Kg	₽	11/07/11 04:27	11/11/11 17:28	1
PCB-1254	ND		0.019	0.0027	mg/Kg	₽	11/07/11 04:27	11/11/11 17:28	1
PCB-1260	ND		0.019	0.0027	mg/Kg	\$	11/07/11 04:27	11/11/11 17:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		35 - 140				11/07/11 04:27	11/11/11 17:28	1
DCB Decachlorobiphenyl (Surr)	94		35 - 140				11/07/11 04:27	11/11/11 17:28	1
Method: 8151A - Herbicides (GC	3)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND	-	0.092	0.0063	mg/Kg	₩	11/11/11 03:12	11/18/11 16:23	20
2,4,5-T	ND		0.023	0.0029	mg/Kg	₽	11/11/11 03:12	11/18/11 16:23	20
Silvex (2,4,5-TP)	ND		0.023	0.0024	mg/Kg	₽	11/11/11 03:12	11/18/11 16:23	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	56	-	42 - 140				11/11/11 03:12	11/18/11 15:59	20

42 - 140

63

ND

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1			— -	11/14/11 10:12	11/15/11 17:51	1
Arsenic	5.1		1.1		mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Barium	220	В	22	0.054	mg/Kg	₽	11/14/11 10:12	11/15/11 17:51	1
Boron	81		22	0.28	mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Beryllium	4.3	В	0.43		mg/Kg	₽	11/14/11 10:12	11/15/11 17:51	1
Cadmium	0.23	J	0.54	0.026	mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Chromium	5.3		1.1	0.18	mg/Kg		11/14/11 10:12	11/16/11 11:58	2
Cobalt	1.6	J	5.4		mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Copper	3.5		2.7	0.37	mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Lead	0.80		0.32	0.16	mg/Kg		11/14/11 10:12	11/15/11 17:51	1
Manganese	4000	В	3.2	0.10	mg/Kg	₩	11/14/11 10:12	11/16/11 11:58	2
Nickel	2.2	J	4.3	0.41	mg/Kg	₽	11/14/11 10:12	11/15/11 17:51	1
Selenium	1.7		1.1	0.45	mg/Kg	₽	11/14/11 10:12	11/16/11 11:58	2
Silver	ND		1.1	0.13	mg/Kg	₽	11/14/11 10:12	11/16/11 11:58	2
Thallium	ND		2.2	0.45	mg/Kg	₽	11/14/11 10:12	11/16/11 11:58	2
Vanadium	13		5.4	0.20	mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Zinc	1.8	JB	2.2	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 17:51	1
Tin -	1.3	J	11	0.58	mg/Kg	₩	11/14/11 10:12	11/15/11 17:51	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	5.3		0.013	0.0021	mg/Kg			11/29/11 12:19	1
Cr (VI)	ND		0.46	0.12	mg/Kg	₽	11/18/11 10:00	11/22/11 15:14	1
Percent Moisture	13		0.10	0.10	%			11/03/11 16:10	1

0.038

0.012 mg/Kg

11/15/11 10:58

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1 (15')-11/3/11

Date Collected: 11/03/11 09:50 Date Received: 11/03/11 11:15 Lab Sample ID: 180-5526-4

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 86.6

General Chemistry (Continued) Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	20		2.9	0.57	mg/Kg	₩	11/08/11 14:34	11/09/11 15:16	5
Cyanide, Weak Acid Dissociable	1.5		0.59	0.19	mg/Kg	\$	11/16/11 11:49	11/16/11 15:08	1
- General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.46	0.11	mg/Kg	\	11/22/11 13:00	11/23/11 10:14	1
- General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42	В	9.9	2.2	mg/Kg			11/08/11 19:17	1
Nitrate as N	0.98		0.50	0.15	mg/Kg			11/08/11 19:17	1
Nitrite as N	0.59		0.50	0.16	mg/Kg			11/08/11 19:17	1
Sulfate	5400	В	99	12	mg/Kg			11/08/11 19:31	10

Client Sample ID: B-5(6')-11/4/11 Lab Sample ID: 180-5622-1

Date Collected: 11/04/11 09:00 Matrix: Solid Date Received: 11/04/11 13:00 Percent Solids: 89.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		22	5.4	ug/Kg	\$	11/07/11 05:10	11/07/11 10:57	1
Benzene	ND		5.4	0.73	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Bromodichloromethane	ND		5.4	0.60	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Bromoform	ND		5.4	0.48	ug/Kg	\$	11/07/11 05:10	11/07/11 10:57	1
Bromomethane	ND		5.4	0.80	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
2-Butanone (MEK)	ND		5.4	0.95	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Carbon disulfide	ND		5.4	0.55	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
Carbon tetrachloride	ND		5.4	0.48	ug/Kg	☼	11/07/11 05:10	11/07/11 10:57	1
Chlorobenzene	ND		5.4	0.82	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Chloroethane	ND		5.4	1.7	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
Chloroform	ND		5.4	0.63	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
Chloromethane	ND		5.4	0.92	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Dibromochloromethane	ND		5.4	0.76	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
1,1-Dichloroethane	ND		5.4	0.62	ug/Kg	☼	11/07/11 05:10	11/07/11 10:57	1
1,2-Dichloroethane	ND		5.4	0.66	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,1-Dichloroethene	ND		5.4	0.91	ug/Kg	\$	11/07/11 05:10	11/07/11 10:57	1
Acetonitrile	ND		110	25	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2-Dichloropropane	ND		5.4	0.58	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
cis-1,3-Dichloropropene	ND		5.4	0.73	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
trans-1,3-Dichloropropene	ND		5.4	0.64	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Ethylbenzene	ND		5.4	0.69	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
2-Hexanone	ND		5.4	0.74	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
Methylene Chloride	6.8	В	5.4	0.72	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
4-Methyl-2-pentanone (MIBK)	ND		5.4	0.70	ug/Kg	☼	11/07/11 05:10	11/07/11 10:57	1
Bromochloromethane	ND		5.4	0.74	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
Styrene	ND		5.4	0.76	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
1,1,2,2-Tetrachloroethane	ND		5.4	0.77	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Tetrachloroethene	ND		5.4	0.73	ug/Kg	φ.	11/07/11 05:10	11/07/11 10:57	1
1,1,1-Trichloroethane	ND		5.4	0.52	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,1,2-Trichloroethane	ND		5.4	0.90	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(6')-11/4/11

Date Collected: 11/04/11 09:00 Date Received: 11/04/11 13:00 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-1

Matrix: Solid

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND	5.4	0.71	ug/Kg	\	11/07/11 05:10	11/07/11 10:57	1
Vinyl chloride	ND	5.4	0.51	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Xylenes, Total	ND	16	2.4	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Cyclohexane	ND	5.4	0.40	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2-Dibromo-3-Chloropropane	ND	5.4	0.81	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2-Dibromoethane (EDB)	ND	5.4	0.93	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Dichlorodifluoromethane	ND	5.4	0.72	ug/Kg	\$	11/07/11 05:10	11/07/11 10:57	1
cis-1,2-Dichloroethene	ND	5.4	0.76	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
trans-1,2-Dichloroethene	ND	5.4	0.64	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Isopropylbenzene	ND	5.4	0.73	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Methyl acetate	ND	5.4	0.97	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
Methylcyclohexane	ND	5.4	0.78	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
Methyl tert-butyl ether	ND	5.4	0.81	ug/Kg	\$	11/07/11 05:10	11/07/11 10:57	1
Trichlorofluoromethane	ND	5.4	0.99	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.4	1.1	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2-Dichlorobenzene	ND	5.4	0.86	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
1,3-Dichlorobenzene	ND	5.4	0.71	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,4-Dichlorobenzene	ND	5.4	0.69	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2,4-Trichlorobenzene	ND	5.4	0.95	ug/Kg	ф-	11/07/11 05:10	11/07/11 10:57	1
Toluene	ND	5.4	0.79	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
N-Propylbenzene	ND	5.4		ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2,3-Trichloropropane	ND	5.4	1.0	ug/Kg		11/07/11 05:10	11/07/11 10:57	1
1,3,5-Trimethylbenzene	ND	5.4	0.72	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
tert-Butylbenzene	ND	5.4	0.76	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
1,2,4-Trimethylbenzene	ND	5.4	0.70	ug/Kg	φ-	11/07/11 05:10	11/07/11 10:57	1
sec-Butylbenzene	ND	5.4	0.84	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
n-Butylbenzene	ND	5.4	0.86	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Hexachlorobutadiene	ND	5.4	1.2	ug/Kg	φ-	11/07/11 05:10	11/07/11 10:57	1
Naphthalene	ND	5.4	1.1	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Acrolein	ND	110	7.6	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Acrylonitrile	ND	110	11	ug/Kg	ф-	11/07/11 05:10	11/07/11 10:57	1
Methacrylonitrile	ND	5.4	0.32	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Isobutyl alcohol	ND	220	28	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Methyl methacrylate	ND	5.4	0.74	ug/Kg	φ.	11/07/11 05:10	11/07/11 10:57	1
Ethyl methacrylate	ND	5.4	0.46	ug/Kg	₩	11/07/11 05:10	11/07/11 10:57	1
Vinyl acetate	ND	5.4	0.38	ug/Kg	₽	11/07/11 05:10	11/07/11 10:57	1
Hexane	ND	5.4	1.1	ug/Kg	-	11/07/11 05:10	11/07/11 10:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		52 - 124	11/07/11 05:10	11/07/11 10:57	1
Toluene-d8 (Surr)	102		72 - 127	11/07/11 05:10	11/07/11 10:57	1
4-Bromofluorobenzene (Surr)	97		63 - 120	11/07/11 05:10	11/07/11 10:57	1
Dibromofluoromethane (Surr)	90		68 - 121	11/07/11 05:10	11/07/11 10:57	1

Method: 8270C - Semivolatile	Organic Compounds	s (GC/MS)
------------------------------	-------------------	-----------

Method: 6270C - Sentivolatile Of	ganic Compou	nus (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.37	0.028	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	1
Acenaphthene	ND		0.074	0.0071	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Acetophenone	ND		0.37	0.030	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Acenaphthylene	ND		0.074	0.0085	mg/Kg	\$	11/12/11 03:15	11/14/11 22:17	1
Anthracene	0.011	J	0.074	0.0072	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(6')-11/4/11

Date Collected: 11/04/11 09:00 Date Received: 11/04/11 13:00 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.084		0.074	0.0093	mg/Kg	\	11/12/11 03:15	11/14/11 22:17	1
Benzo[a]pyrene	0.10		0.074	0.0074	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	1
Benzo[b]fluoranthene	0.15		0.074	0.012	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzo[g,h,i]perylene	0.095		0.074	0.0074	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzo[k]fluoranthene	0.065	J	0.074	0.015	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Bis(2-chloroethyl)ether	ND		0.074	0.0099	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Bis(2-chloroethoxy)methane	ND		0.37	0.024	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
2,2'-oxybis[1-chloropropane]	ND		0.074	0.0080	mg/Kg		11/12/11 03:15	11/14/11 22:17	· · · · · · · ·
Bis(2-ethylhexyl) phthalate	0.072	J	0.74	0.060	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
4-Bromophenyl phenyl ether	ND		0.37	0.032	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Butyl benzyl phthalate	ND		0.37	0.051	mg/Kg		11/12/11 03:15	11/14/11 22:17	,
Carbazole	0.0070	J	0.074	0.0068	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
4-Chloroaniline	ND	_	0.37	0.030	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
2-Chloronaphthalene	ND		0.074	0.0077	mg/Kg		11/12/11 03:15	11/14/11 22:17	
4-Chlorophenyl phenyl ether	ND		0.37	0.041	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Chrysene	0.11		0.074	0.0088	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	,
Dibenz(a,h)anthracene	0.041		0.074	0.0082	mg/Kg		11/12/11 03:15	11/14/11 22:17	
Di-n-butyl phthalate	ND	•	0.37		mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
3.3'-Dichlorobenzidine	ND		0.37	0.039	mg/Kg		11/12/11 03:15	11/14/11 22:17	
-,	ND ND		0.37	0.039		· · · · · · · · · · · · · · · · · · ·	11/12/11 03:15	11/14/11 22:17	
Diethyl phthalate	ND ND				mg/Kg				
Dimethyl phthalate			0.37	0.040	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
2,4-Dinitrotoluene	ND		0.37	0.030	mg/Kg		11/12/11 03:15	11/14/11 22:17	
2,6-Dinitrotoluene	ND		0.37		mg/Kg	*	11/12/11 03:15	11/14/11 22:17	,
Di-n-octyl phthalate	ND		0.37	0.039	mg/Kg	₽ **	11/12/11 03:15	11/14/11 22:17	•
Fluoranthene	0.10		0.074	0.0079	mg/Kg	<u></u>	11/12/11 03:15	11/14/11 22:17	
Fluorene	ND		0.074	0.0098	mg/Kg	*	11/12/11 03:15	11/14/11 22:17	•
Hexachlorobenzene	ND		0.074	0.0079	mg/Kg	₩.	11/12/11 03:15	11/14/11 22:17	•
3,3'-Dimethylbenzidine	ND		1.9	0.020	mg/Kg	· · · · · · <u>·</u>	11/12/11 03:15	11/14/11 22:17	
Hexachlorobutadiene	ND		0.074	0.0083		₩.	11/12/11 03:15	11/14/11 22:17	
Hexachlorocyclopentadiene	ND		0.37	0.040	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Hexachloroethane	ND		0.37	0.027	mg/Kg		11/12/11 03:15	11/14/11 22:17	
Indeno[1,2,3-cd]pyrene	0.091		0.074	0.0076	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Isophorone	ND		0.37	0.028	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	•
2-Methylnaphthalene	0.013	J	0.074	0.0067	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Naphthalene	0.024	J	0.074	0.0064	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	•
2-Nitroaniline	ND		1.9	0.17	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	•
3-Nitroaniline	ND		1.9	0.15	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	•
4-Nitroaniline	ND		1.9	0.15	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
Nitrobenzene	ND		0.74	0.031	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
N-Nitrosodi-n-propylamine	ND		0.074	0.0087	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
N-Nitrosodiphenylamine	ND		0.37	0.034	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
Phenanthrene	0.062	J	0.074	0.012	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
Pyrene	0.10		0.074	0.0075	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	
4-Chloro-3-methylphenol	ND		0.37	0.034	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	· · · · · · · · ·
2-Chlorophenol	ND		0.37	0.030	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
Aniline	ND		0.37	0.029	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
2-Methylphenol	ND		0.37	0.026	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
Methylphenol, 3 & 4	ND		0.37		mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	
2,4-Dichlorophenol	ND		0.074	0.0074		₽	11/12/11 03:15	11/14/11 22:17	1
2,4-Dimethylphenol	ND		0.37		mg/Kg		11/12/11 03:15	11/14/11 22:17	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(6')-11/4/11

Date Collected: 11/04/11 09:00 Date Received: 11/04/11 13:00 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	ND		1.9	0.44	mg/Kg	<u> </u>	11/12/11 03:15	11/14/11 22:17	1
4,6-Dinitro-2-methylphenol	ND		1.9	0.15	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
2-Nitrophenol	ND		0.37	0.041	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzyl alcohol	ND		0.37	0.045	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
4-Nitrophenol	ND		1.9	0.14	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Pentachlorophenol	ND		0.37	0.033	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Phenol	ND		0.074	0.0088	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
2,4,5-Trichlorophenol	ND		0.37	0.040	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
2,4,6-Trichlorophenol	ND		0.37	0.055	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
1,1'-Biphenyl	ND		0.37	0.033	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Caprolactam	ND		1.9	0.28	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzaldehyde	ND		0.37	0.056	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Atrazine	ND		0.37	0.036	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzoic acid	ND		1.9	0.15	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Benzidine	ND		7.4	1.6	mg/Kg	\$	11/12/11 03:15	11/14/11 22:17	1
1,4-Dioxane	ND		0.74	0.042	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.37	0.047	mg/Kg	₩	11/12/11 03:15	11/14/11 22:17	1
o-Toluidine	ND		0.37	0.028	mg/Kg	₽	11/12/11 03:15	11/14/11 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		25 - 104	11/12/11 03:15	11/14/11 22:17	1
2-Fluorobiphenyl	59		35 - 105	11/12/11 03:15	11/14/11 22:17	1
Terphenyl-d14	72		25 - 127	11/12/11 03:15	11/14/11 22:17	1
Phenol-d5	69		25 - 105	11/12/11 03:15	11/14/11 22:17	1
2-Fluorophenol	60		39 - 103	11/12/11 03:15	11/14/11 22:17	1
2,4,6-Tribromophenol	45		35 - 124	11/12/11 03:15	11/14/11 22:17	1

Analyte	Result (Qualifier R	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	0.0019	0.00024	mg/Kg	₩	11/14/11 04:19	11/16/11 12:36	1
4,4'-DDE	ND	0.0019	0.00028	mg/Kg	≎	11/14/11 04:19	11/16/11 12:36	1
4,4'-DDT	ND	0.0019	0.00028	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Aldrin	ND	0.0019	0.00033	mg/Kg	\$	11/14/11 04:19	11/16/11 12:36	1
alpha-BHC	ND	0.0019	0.00030	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
beta-BHC	ND	0.0019	0.00048	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
delta-BHC	ND	0.0019	0.00028	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Dieldrin	ND	0.0019	0.00031	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Endosulfan I	ND	0.0019	0.00035	mg/Kg	≎	11/14/11 04:19	11/16/11 12:36	1
Endosulfan II	ND	0.0019	0.00033	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Endosulfan sulfate	ND	0.0019	0.00019	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Endrin	ND	0.0019	0.00036	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Diallate	ND	0.03	0.0031	mg/Kg	\$	11/14/11 04:19	11/16/11 12:36	1
gamma-BHC (Lindane)	0.00061	J 0.0019	0.00033	mg/Kg	≎	11/14/11 04:19	11/16/11 12:36	1
gamma-Chlordane	ND	0.0019	0.00037	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Heptachlor	ND	0.0019	0.00041	mg/Kg	\$	11/14/11 04:19	11/16/11 12:36	1
Heptachlor epoxide	ND	0.0019	0.00036	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Methoxychlor	ND	0.003	0.00039	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1
Toxaphene	ND	0.074	0.012	mg/Kg	φ	11/14/11 04:19	11/16/11 12:36	1
Chlordane (technical)	ND	0.019	0.00082	mg/Kg	₽	11/14/11 04:19	11/16/11 12:36	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(6')-11/4/11

Date Collected: 11/04/11 09:00 Date Received: 11/04/11 13:00 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-1

Matrix: Solid

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	77	45 - 130	11/14/11 04:19	11/16/11 12:36	1
Tetrachloro-m-xylene	78	45 - 130	11/14/11 04:19	11/16/11 12:36	1
DCB Decachlorobiphenyl (Surr)	74	45 - 130	11/14/11 04:19	11/16/11 12:36	1
DCB Decachlorobiphenyl (Surr)	72	45 - 130	11/14/11 04:19	11/16/11 12:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.019	0.0028	mg/Kg	*	11/09/11 02:59	11/10/11 03:51	1
PCB-1221	ND		0.019	0.0036	mg/Kg	₽	11/09/11 02:59	11/10/11 03:51	1
PCB-1232	ND		0.019	0.0032	mg/Kg	₽	11/09/11 02:59	11/10/11 03:51	1
PCB-1242	ND		0.019	0.0030	mg/Kg	\$	11/09/11 02:59	11/10/11 03:51	1
PCB-1248	ND		0.019	0.0018	mg/Kg	₩	11/09/11 02:59	11/10/11 03:51	1
PCB-1254	ND		0.019	0.0026	mg/Kg	₽	11/09/11 02:59	11/10/11 03:51	1
PCB-1260	ND		0.019	0.0026	mg/Kg	\$	11/09/11 02:59	11/10/11 03:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	35 - 140	11/09/11 02:59	11/10/11 03:51	1
DCB Decachlorobiphenyl (Surr)	93	35 - 140	11/09/11 02:59	11/10/11 03:51	1

Method: 8151A - Herbicides (0	GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND	0.089	0.0061	mg/Kg	₽	11/11/11 03:12	11/18/11 16:48	20
2,4,5-T	ND	0.022	0.0028	mg/Kg	₩	11/11/11 03:12	11/18/11 16:48	20
Silvex (2,4,5-TP)	ND	0.022	0.0023	mg/Kg	\$	11/11/11 03:12	11/18/11 16:48	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyate	70Necovery	Qualifier	Lillits	riepaieu	Allalyzeu	DII Fac
2,4-Dichlorophenylacetic acid	44		42 - 140	11/11/11 03:12	11/18/11 16:23	20
2,4-Dichlorophenylacetic acid	48		42 - 140	11/11/11 03:12	11/18/11 16:48	20

_	• •								
Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1		mg/Kg	-	11/14/11 10:12	11/15/11 18:22	1
Arsenic	4.0		1.1	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 18:22	1
Barium	290	В	21	0.053	mg/Kg	₩	11/14/11 10:12	11/15/11 18:22	1
Boron	78		21	0.27	mg/Kg	☼	11/14/11 10:12	11/15/11 18:22	1
Beryllium	4.6	В	0.43	0.016	mg/Kg	₩	11/14/11 10:12	11/15/11 18:22	1
Cadmium	0.10	J	0.53	0.026	mg/Kg	≎	11/14/11 10:12	11/15/11 18:22	1
Chromium	5.8		1.1	0.18	mg/Kg	₩	11/14/11 10:12	11/16/11 12:16	2
Cobalt	1.7	J	5.3	0.095	mg/Kg	₩	11/14/11 10:12	11/15/11 18:22	1
Copper	6.1		2.7	0.36	mg/Kg	≎	11/14/11 10:12	11/15/11 18:22	1
Lead	7.2		0.32	0.15	mg/Kg	₩.	11/14/11 10:12	11/15/11 18:22	1
Manganese	4100	В	3.2	0.10	mg/Kg	₩	11/14/11 10:12	11/16/11 12:16	2
Nickel	3.6	J	4.3	0.41	mg/Kg	₩	11/14/11 10:12	11/15/11 18:22	1
Selenium	1.1		1.1	0.44	mg/Kg	≎	11/14/11 10:12	11/16/11 12:16	2
Silver	ND		1.1	0.12	mg/Kg	₩	11/14/11 10:12	11/16/11 12:16	2
Thallium	ND		2.1	0.44	mg/Kg	₩	11/14/11 10:12	11/16/11 12:16	2
Vanadium	10		5.3	0.20	mg/Kg	₩	11/14/11 10:12	11/15/11 18:22	1
Zinc	19	В	2.1	0.24	mg/Kg	₽	11/14/11 10:12	11/15/11 18:22	1
Tin	2.0	J	11	0.57	mg/Kg	₽	11/14/11 10:12	11/15/11 18:22	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(6')-11/4/11

Date Collected: 11/04/11 09:00 Date Received: 11/04/11 13:00

Lab Sample ID: 180-5622-1

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 89.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.036	0.012	mg/Kg	₩	11/16/11 03:30	11/16/11 08:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	5.8		0.013	0.0021	mg/Kg			11/29/11 14:59	1
Cr (VI)	ND		0.45	0.11	mg/Kg	₽	11/18/11 10:00	11/22/11 15:33	1
Percent Moisture	11		0.10	0.10	%			11/07/11 15:29	1
Cyanide, Total	6.8		2.7	0.54	mg/Kg	₽	11/18/11 13:22	11/19/11 17:40	5
Cyanide, Weak Acid Dissociable	0.23	J	0.57	0.18	mg/Kg	₩	11/16/11 11:49	11/16/11 15:08	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.44	0.11	mg/Kg	<u> </u>	11/22/11 13:00	11/23/11 10:33	1

RL

10

0.50

0.50

50

MDL Unit

2.2 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

5.9 mg/Kg

D

Prepared

Result Qualifier

51

0.73

ND

1900 B

Client Sample ID: B-5(16')-11/4/11

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00

Analyte

Chloride

Nitrate as N

Nitrite as N

Sulfate

Lab Sample ID: 180-5622-2

Analyzed

11/16/11 18:27

11/16/11 18:27

11/16/11 18:27

11/16/11 18:41

Dil Fac

Matrix: Solid Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20	5.0	ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
Benzene	ND		5.0	0.67	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Bromodichloromethane	ND		5.0	0.56	ug/Kg	≎	11/07/11 05:10	11/07/11 11:19	1
Bromoform	ND		5.0	0.44	ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
Bromomethane	ND		5.0	0.73	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
2-Butanone (MEK)	ND		5.0	0.87	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Carbon disulfide	ND		5.0	0.51	ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
Carbon tetrachloride	ND		5.0	0.44	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Chlorobenzene	ND		5.0	0.75	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Chloroethane	ND		5.0	1.5	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Chloroform	ND		5.0	0.58	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Chloromethane	ND		5.0	0.84	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Dibromochloromethane	ND		5.0	0.70	ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
1,1-Dichloroethane	ND		5.0	0.57	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2-Dichloroethane	ND		5.0	0.61	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,1-Dichloroethene	ND		5.0	0.84	ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
Acetonitrile	ND		99	23	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2-Dichloropropane	ND		5.0	0.54	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
cis-1,3-Dichloropropene	ND		5.0	0.67	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
trans-1,3-Dichloropropene	ND		5.0	0.59	ug/Kg	₩	11/07/11 05:10	11/07/11 11:19	1
Ethylbenzene	ND		5.0	0.64	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
2-Hexanone	ND		5.0	0.68	ug/Kg	₩	11/07/11 05:10	11/07/11 11:19	1
Methylene Chloride	6.6	В	5.0	0.67	ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1

5.0

MDL Unit

ug/Kg

0.65

D

₩

Prepared

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

₩

₩

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

11/07/11 11:19

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(16')-11/4/11

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00

4-Methyl-2-pentanone (MIBK)

n-Butylbenzene

Naphthalene

Acrylonitrile

Methacrylonitrile

Isobutyl alcohol

Vinyl acetate

Hexane

Methyl methacrylate

Ethyl methacrylate

Acrolein

Hexachlorobutadiene

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-2

Analyzed

11/07/11 11:19

Matrix: Solid

Dil Fac

Percent Solids: 90.7

Bromochloromethane	ND	5.0	0.68 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Styrene	ND	5.0	0.70 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.71 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Tetrachloroethene	ND	5.0	0.67 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,1,1-Trichloroethane	ND	5.0	0.48 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,1,2-Trichloroethane	ND	5.0	0.82 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Trichloroethene	ND	5.0	0.65 ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
Vinyl chloride	ND	5.0	0.47 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Xylenes, Total	ND	15	2.2 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Cyclohexane	ND	5.0	0.37 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2-Dibromo-3-Chloropropane	ND	5.0	0.74 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2-Dibromoethane (EDB)	ND	5.0	0.86 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Dichlorodifluoromethane	ND	5.0	0.66 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
cis-1,2-Dichloroethene	ND	5.0	0.70 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
trans-1,2-Dichloroethene	ND	5.0	0.59 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Isopropylbenzene	ND	5.0	0.67 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Methyl acetate	ND	5.0	0.89 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Methylcyclohexane	ND	5.0	0.72 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Methyl tert-butyl ether	ND	5.0	0.74 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Trichlorofluoromethane	ND	5.0	0.91 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2-Dichlorobenzene	ND	5.0	0.79 ug/Kg	\$	11/07/11 05:10	11/07/11 11:19	1
1,3-Dichlorobenzene	ND	5.0	0.65 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,4-Dichlorobenzene	ND	5.0	0.63 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2,4-Trichlorobenzene	ND	5.0	0.87 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
Toluene	ND	5.0	0.72 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
N-Propylbenzene	ND	5.0	0.76 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,2,3-Trichloropropane	ND	5.0	0.92 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
1,3,5-Trimethylbenzene	ND	5.0	0.66 ug/Kg	₽	11/07/11 05:10	11/07/11 11:19	1
tert-Butylbenzene	ND	5.0	0.70 ug/Kg	₩	11/07/11 05:10	11/07/11 11:19	1
1,2,4-Trimethylbenzene	ND	5.0	0.64 ug/Kg	₩	11/07/11 05:10	11/07/11 11:19	1
sec-Butylbenzene	ND	5.0	0.78 ug/Kg	₩	11/07/11 05:10	11/07/11 11:19	1

Surrogate	%Recovery Qualifier	Limits	P	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81	52 - 124	11/0	07/11 05:10	11/07/11 11:19	1
Toluene-d8 (Surr)	109	72 - 127	11/0	07/11 05:10	11/07/11 11:19	1
4-Bromofluorobenzene (Surr)	100	63 - 120	11/0	07/11 05:10	11/07/11 11:19	1
Dibromofluoromethane (Surr)	83	68 - 121	11/0	07/11 05:10	11/07/11 11:19	1

5.0

5.0

5.0

99

99

5.0

200

5.0

5.0

5.0

5.0

0.79

7.0 ug/Kg

ug/Kg

ug/Kg

1.0 ug/Kg

10 ug/Kg

26 ug/Kg

0.29 ug/Kg

0.68 ug/Kg

0.42 ug/Kg

0.35 ug/Kg

1.0 ug/Kg

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(16')-11/4/11

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4,5-Tetrachlorobenzene	ND		0.36	0.028	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	-
Acenaphthene	ND		0.073	0.0070	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Acetophenone	ND		0.36	0.030	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Acenaphthylene	ND		0.073	0.0084	mg/Kg	\$	11/12/11 03:15	11/21/11 15:01	
Anthracene	ND		0.073	0.0071	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Benzo[a]anthracene	ND		0.073	0.0092	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Benzo[a]pyrene	ND		0.073	0.0073	mg/Kg	φ-	11/12/11 03:15	11/21/11 15:01	
Benzo[b]fluoranthene	ND		0.073	0.011	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Benzo[g,h,i]perylene	ND		0.073	0.0073	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Benzo[k]fluoranthene	ND		0.073		mg/Kg		11/12/11 03:15	11/21/11 15:01	
Bis(2-chloroethyl)ether	ND		0.073	0.0098	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Bis(2-chloroethoxy)methane	ND		0.36		mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
2,2'-oxybis[1-chloropropane]	ND		0.073	0.0079			11/12/11 03:15	11/21/11 15:01	
Bis(2-ethylhexyl) phthalate	0.087	a .	0.73		mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
4-Bromophenyl phenyl ether	ND	-	0.36		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Butyl benzyl phthalate	ND		0.36		mg/Kg	 ф	11/12/11 03:15	11/21/11 15:01	
Carbazole	ND		0.073	0.0067	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
4-Chloroaniline	ND		0.36		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
2-Chloronaphthalene	ND		0.073	0.0076		Ф	11/12/11 03:15	11/21/11 15:01	
4-Chlorophenyl phenyl ether	ND		0.36	0.041	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Chrysene	ND		0.073			₩	11/12/11 03:15	11/21/11 15:01	
Dibenz(a,h)anthracene	ND		0.073	0.0081		φ.	11/12/11 03:15	11/21/11 15:01	
	ND ND		0.075		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Di-n-butyl phthalate 3,3'-Dichlorobenzidine	ND ND		0.36		mg/Kg		11/12/11 03:15	11/21/11 15:01	
		<mark>.</mark>							
Diethyl phthalate	0.045	J	0.36		mg/Kg	~ ☆	11/12/11 03:15	11/21/11 15:01	
Dimethyl phthalate	ND		0.36	0.040	0 0	₩	11/12/11 03:15	11/21/11 15:01	
2,4-Dinitrotoluene	ND		0.36	0.029			11/12/11 03:15	11/21/11 15:01	
2,6-Dinitrotoluene	ND		0.36		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Di-n-octyl phthalate	ND		0.36		mg/Kg		11/12/11 03:15	11/21/11 15:01	
Fluoranthene	0.0087	J	0.073	0.0078		<u></u> .	11/12/11 03:15	11/21/11 15:01	
Fluorene	ND		0.073	0.0096		*	11/12/11 03:15	11/21/11 15:01	
Hexachlorobenzene	ND		0.073	0.0078		‡	11/12/11 03:15	11/21/11 15:01	
3,3'-Dimethylbenzidine	ND		1.9		mg/Kg	<u></u> .	11/12/11 03:15	11/21/11 15:01	
Hexachlorobutadiene	ND		0.073	0.0082		*	11/12/11 03:15	11/21/11 15:01	
Hexachlorocyclopentadiene	ND		0.36		mg/Kg		11/12/11 03:15	11/21/11 15:01	
Hexachloroethane	ND		0.36		mg/Kg	<u>.</u> .	11/12/11 03:15	11/21/11 15:01	
Indeno[1,2,3-cd]pyrene	ND		0.073	0.0075		₩	11/12/11 03:15	11/21/11 15:01	
Isophorone	ND		0.36		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
2-Methylnaphthalene	0.029	J	0.073	0.0066			11/12/11 03:15	11/21/11 15:01	
Naphthalene	0.17		0.073	0.0063	mg/Kg	₽-	11/12/11 03:15	11/21/11 15:01	
2-Nitroaniline	ND		1.9	0.16	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
3-Nitroaniline	ND		1.9		mg/Kg		11/12/11 03:15	11/21/11 15:01	
4-Nitroaniline	ND		1.9		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Nitrobenzene	ND		0.73		mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
N-Nitrosodi-n-propylamine	ND		0.073	0.0086			11/12/11 03:15	11/21/11 15:01	
N-Nitrosodiphenylamine	ND		0.36		mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	
Phenanthrene	0.016	J	0.073		mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
Pyrene	0.0079	J	0.073	0.0074	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
4-Chloro-3-methylphenol	ND		0.36	0.034	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	
2-Chlorophenol	ND		0.36	0.030	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(16')-11/4/11

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aniline	ND		0.36	0.028	mg/Kg	*	11/12/11 03:15	11/21/11 15:01	1
2-Methylphenol	ND		0.36	0.026	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Methylphenol, 3 & 4	ND		0.36	0.036	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
2,4-Dichlorophenol	ND		0.073	0.0073	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
2,4-Dimethylphenol	ND		0.36	0.057	mg/Kg	\$	11/12/11 03:15	11/21/11 15:01	1
2,4-Dinitrophenol	ND		1.9	0.43	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
4,6-Dinitro-2-methylphenol	ND		1.9	0.15	mg/Kg	≎	11/12/11 03:15	11/21/11 15:01	1
2-Nitrophenol	ND		0.36	0.040	mg/Kg	\$	11/12/11 03:15	11/21/11 15:01	1
Benzyl alcohol	ND		0.36	0.044	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
4-Nitrophenol	ND		1.9	0.13	mg/Kg	≎	11/12/11 03:15	11/21/11 15:01	1
Pentachlorophenol	ND		0.36	0.033	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Phenol	ND		0.073	0.0086	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
2,4,5-Trichlorophenol	ND		0.36	0.039	mg/Kg	≎	11/12/11 03:15	11/21/11 15:01	1
2,4,6-Trichlorophenol	ND		0.36	0.055	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
1,1'-Biphenyl	ND		0.36	0.033	mg/Kg	≎	11/12/11 03:15	11/21/11 15:01	1
Caprolactam	ND		1.9	0.28	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Benzaldehyde	ND		0.36	0.055	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Atrazine	ND		0.36	0.036	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Benzoic acid	ND		1.9	0.15	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
Benzidine	ND		7.3	1.5	mg/Kg	\$	11/12/11 03:15	11/21/11 15:01	1
1,4-Dioxane	ND		0.73	0.042	mg/Kg	₩	11/12/11 03:15	11/21/11 15:01	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.36	0.047	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1
o-Toluidine	ND		0.36	0.027	mg/Kg	₽	11/12/11 03:15	11/21/11 15:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69		25 - 104	11/12/11 03:15	11/21/11 15:01	1
2-Fluorobiphenyl	68		35 - 105	11/12/11 03:15	11/21/11 15:01	1
Terphenyl-d14	69		25 - 127	11/12/11 03:15	11/21/11 15:01	1
Phenol-d5	79		25 - 105	11/12/11 03:15	11/21/11 15:01	1
2-Fluorophenol	66		39 - 103	11/12/11 03:15	11/21/11 15:01	1
2,4,6-Tribromophenol	44		35 - 124	11/12/11 03:15	11/21/11 15:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0019	0.00024	mg/Kg	*	11/14/11 04:19	11/16/11 12:55	1
4,4'-DDE	ND		0.0019	0.00028	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
4,4'-DDT	0.00080	Jр	0.0019	0.00027	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Aldrin	ND		0.0019	0.00033	mg/Kg	*	11/14/11 04:19	11/16/11 12:55	1
alpha-BHC	ND		0.0019	0.00030	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
beta-BHC	ND		0.0019	0.00048	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
delta-BHC	ND		0.0019	0.00028	mg/Kg	\$	11/14/11 04:19	11/16/11 12:55	1
Dieldrin	ND		0.0019	0.00031	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Endosulfan I	ND		0.0019	0.00035	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Endosulfan II	ND		0.0019	0.00032	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Endosulfan sulfate	ND		0.0019	0.00019	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Endrin	ND		0.0019	0.00036	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Diallate	ND		0.036	0.0031	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
gamma-BHC (Lindane)	ND		0.0019	0.00032	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
gamma-Chlordane	ND		0.0019	0.00036	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Heptachlor	ND		0.0019	0.00041	mg/Kg		11/14/11 04:19	11/16/11 12:55	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(16')-11/4/11

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	ND		0.0019	0.00036	mg/Kg	₩	11/14/11 04:19	11/16/11 12:55	1
Methoxychlor	ND		0.0036	0.00038	mg/Kg	₩	11/14/11 04:19	11/16/11 12:55	1
Toxaphene	ND		0.074	0.012	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Chlordane (technical)	ND		0.019	0.00081	mg/Kg	₽	11/14/11 04:19	11/16/11 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		45 - 130				11/14/11 04:19	11/16/11 12:55	1
Tetrachloro-m-xylene	79		45 - 130				11/14/11 04:19	11/16/11 12:55	1
DCB Decachlorobiphenyl (Surr)	80		45 - 130				11/14/11 04:19	11/16/11 12:55	1
DCB Decachlorobiphenyl (Surr)	75		45 - 130				11/14/11 04:19	11/16/11 12:55	1

Analyte	nated Biphenyls (PCB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.018	0.0027	mg/Kg	<u> </u>	11/09/11 02:59	11/10/11 04:18	1
PCB-1221	ND		0.018	0.0035	mg/Kg	₩	11/09/11 02:59	11/10/11 04:18	1
PCB-1232	ND		0.018	0.0031	mg/Kg	₽	11/09/11 02:59	11/10/11 04:18	1
PCB-1242	ND		0.018	0.0030	mg/Kg	\$	11/09/11 02:59	11/10/11 04:18	1
PCB-1248	ND		0.018	0.0017	mg/Kg	₩	11/09/11 02:59	11/10/11 04:18	1
PCB-1254	ND		0.018	0.0026	mg/Kg	₩	11/09/11 02:59	11/10/11 04:18	1
PCB-1260	ND		0.018	0.0026	mg/Kg		11/09/11 02:59	11/10/11 04:18	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac	
Tetrachloro-m-xylene	94		35 - 140	11/09/11 02:59	11/10/11 04:18	1	
DCB Decachlorobiphenyl (Surr)	97		35 - 140	11/09/11 02:59	11/10/11 04:18	1	

Wethod: 8151A - Herbicides (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.088	0.0060	mg/Kg	*	11/11/11 03:12	11/18/11 17:12	20
2,4,5-T	ND		0.022	0.0028	mg/Kg	₩	11/11/11 03:12	11/18/11 17:12	20
Silvex (2,4,5-TP)	ND		0.022	0.0023	mg/Kg	₽	11/11/11 03:12	11/18/11 17:12	20
	0/5	0 ""					<u> </u>		57.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	49		42 - 140				11/11/11 03:12	11/18/11 16:48	20

2,4-Dichlorophenylacetic acid	53		42 - 140				11/11/11 03:12	11/18/11 17:12	20
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1	0.18	mg/Kg	*	11/14/11 10:12	11/15/11 18:40	1
Arsenic	1.8		1.1	0.24	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Barium	210	В	22	0.055	mg/Kg	₽	11/14/11 10:12	11/15/11 18:40	1
Boron	88		22	0.28	mg/Kg	₽	11/14/11 10:12	11/15/11 18:40	1
Beryllium	4.5	В	0.44	0.016	mg/Kg	₽	11/14/11 10:12	11/15/11 18:40	1
Cadmium	ND		0.55	0.026	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Chromium	13		1.1	0.19	mg/Kg	\$	11/14/11 10:12	11/16/11 12:22	2
Cobalt	0.29	J	5.5	0.097	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Copper	15		2.7	0.37	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Lead	0.30	J	0.33	0.16	mg/Kg	\$	11/14/11 10:12	11/15/11 18:40	1
Manganese	2800	В	3.3	0.10	mg/Kg	₩	11/14/11 10:12	11/16/11 12:22	2
Nickel	4.1	J	4.4	0.42	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Selenium	0.94	J	1.1	0.45	mg/Kg		11/14/11 10:12	11/16/11 12:22	2
Silver	ND		1.1	0.13	mg/Kg	₩	11/14/11 10:12	11/16/11 12:22	2
Thallium	ND		2.2	0.45	mg/Kg	₽	11/14/11 10:12	11/16/11 12:22	2

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5(16')-11/4/11

Date Collected: 11/04/11 09:30 Date Received: 11/04/11 13:00

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5622-2 **Matrix: Solid**

Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vanadium	5.8		5.5	0.20	mg/Kg	*	11/14/11 10:12	11/15/11 18:40	1
Zinc	5.4	В	2.2	0.24	mg/Kg	\$	11/14/11 10:12	11/15/11 18:40	1
Tin	1.9	J	11	0.58	mg/Kg	₩	11/14/11 10:12	11/15/11 18:40	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.036	0.012	mg/Kg	₩	11/16/11 03:30	11/16/11 08:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	13		0.013	0.0021	mg/Kg			11/29/11 14:59	1
Cr (VI)	ND		0.44	0.11	mg/Kg	₩	11/18/11 10:00	11/22/11 15:34	1
Percent Moisture	9.3		0.10	0.10	%			11/07/11 15:29	1
Cyanide, Total	5.9		2.7	0.54	mg/Kg	\$	11/18/11 13:22	11/19/11 17:40	5
Cyanide, Weak Acid Dissociable	0.35	J	0.55	0.17	mg/Kg	₽	11/16/11 11:49	11/16/11 15:09	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
• •									

RL

9.9

0.49

0.49

99

MDL Unit

2.2 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

12 mg/Kg

D

Prepared

Result Qualifier

230 В

ND

ND

1900 B

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09

General Chemistry - Soluble

Analyte

Chloride

Nitrate as N

Nitrite as N

Sulfate

Lab Sample ID: 180-5679-1

Analyzed

11/16/11 18:55

11/16/11 18:55

11/16/11 18:55

11/16/11 19:09

Matrix: Solid

Dil Fac

10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		26	6.4	ug/Kg		11/09/11 05:26	11/09/11 17:34	1
Benzene	ND		6.4	0.86	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Bromodichloromethane	ND		6.4	0.72	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Bromoform	ND		6.4	0.57	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Bromomethane	ND		6.4	0.94	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
2-Butanone (MEK)	ND		6.4	1.1	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Carbon disulfide	ND		6.4	0.66	ug/Kg	\$	11/09/11 05:26	11/09/11 17:34	1
Carbon tetrachloride	ND		6.4	0.57	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Chlorobenzene	ND		6.4	0.97	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Chloroethane	ND		6.4	2.0	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1
Chloroform	ND		6.4	0.75	ug/Kg	₩	11/09/11 05:26	11/09/11 17:34	1
Chloromethane	ND		6.4	1.1	ug/Kg	☼	11/09/11 05:26	11/09/11 17:34	1
Dibromochloromethane	ND		6.4	0.91	ug/Kg		11/09/11 05:26	11/09/11 17:34	1
1,1-Dichloroethane	ND		6.4	0.74	ug/Kg	☼	11/09/11 05:26	11/09/11 17:34	1
1,2-Dichloroethane	ND		6.4	0.78	ug/Kg	☼	11/09/11 05:26	11/09/11 17:34	1
1,1-Dichloroethene	ND		6.4	1.1	ug/Kg	\$	11/09/11 05:26	11/09/11 17:34	1
Acetonitrile	ND		130	29	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Method: 8260B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloropropane	ND		6.4	0.69	ug/Kg	<u></u>	11/09/11 05:26	11/09/11 17:34	
cis-1,3-Dichloropropene	ND		6.4	0.87	ug/Kg		11/09/11 05:26	11/09/11 17:34	
trans-1,3-Dichloropropene	ND		6.4			₽	11/09/11 05:26	11/09/11 17:34	
Ethylbenzene	ND		6.4	0.82	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
2-Hexanone	ND		6.4				11/09/11 05:26	11/09/11 17:34	
Methylene Chloride	1.9	JB	6.4			₽	11/09/11 05:26	11/09/11 17:34	
4-Methyl-2-pentanone (MIBK)	ND		6.4	0.83		₽	11/09/11 05:26	11/09/11 17:34	
Bromochloromethane	ND		6.4	0.88			11/09/11 05:26	11/09/11 17:34	
Styrene	ND		6.4	0.90	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
1,1,2,2-Tetrachloroethane	ND		6.4		ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
Tetrachloroethene	ND		6.4	0.87		ф	11/09/11 05:26	11/09/11 17:34	
1,1,1-Trichloroethane	ND		6.4		ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
1,1,2-Trichloroethane	ND		6.4	1.1	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
Trichloroethene	ND		6.4		ug/Kg	- -	11/09/11 05:26	11/09/11 17:34	
Vinyl chloride	ND		6.4	0.60		₩	11/09/11 05:26	11/09/11 17:34	
Xylenes, Total	ND		19	2.9	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
Cyclohexane	ND		6.4	0.47			11/09/11 05:26	11/09/11 17:34	
1,2-Dibromo-3-Chloropropane	ND		6.4	0.96	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
1,2-Dibromoethane (EDB)	ND		6.4	1.1		₽	11/09/11 05:26	11/09/11 17:34	
Dichlorodifluoromethane	ND		6.4			- -	11/09/11 05:26	11/09/11 17:34	
cis-1,2-Dichloroethene	ND		6.4	0.90	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
trans-1,2-Dichloroethene	ND		6.4	0.76	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	
Isopropylbenzene	ND		6.4	0.87			11/09/11 05:26	11/09/11 17:34	
Methyl acetate	ND		6.4	1.2		₽	11/09/11 05:26	11/09/11 17:34	
Methylcyclohexane	ND		6.4	0.93		₽	11/09/11 05:26	11/09/11 17:34	
Methyl tert-butyl ether	ND		6.4	0.96			11/09/11 05:26	11/09/11 17:34	
Trichlorofluoromethane	ND		6.4		ug/Kg ug/Kg	₩	11/09/11 05:26	11/09/11 17:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.4		ug/Kg ug/Kg	₩	11/09/11 05:26	11/09/11 17:34	
1,2-Dichlorobenzene	ND		6.4				11/09/11 05:26	11/09/11 17:34	
1,3-Dichlorobenzene	ND ND		6.4		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 17:34	
	ND ND						11/09/11 05:26		
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	ND		6.4	0.81	ug/Kg ug/Kg	 \$	11/09/11 05:26	11/09/11 17:34 11/09/11 17:34	
Toluene	ND ND		6.4					11/09/11 17:34	
	ND ND					₩	11/09/11 05:26		
N-Propylbenzene	ND		6.4				11/09/11 05:26	11/09/11 17:34 11/09/11 17:34	
1,2,3-Trichloropropane					ug/Kg		11/09/11 05:26		
1,3,5-Trimethylbenzene	ND		6.4		ug/Kg	\$	11/09/11 05:26	11/09/11 17:34	
tert-Butylbenzene	ND		6.4	0.90	ug/Kg		11/09/11 05:26	11/09/11 17:34	
1,2,4-Trimethylbenzene	ND		6.4	0.83		‡	11/09/11 05:26	11/09/11 17:34	
sec-Butylbenzene	ND		6.4	1.0	ug/Kg	‡	11/09/11 05:26	11/09/11 17:34	
n-Butylbenzene	ND		6.4	1.0			11/09/11 05:26	11/09/11 17:34	
Hexachlorobutadiene	ND		6.4		ug/Kg	*	11/09/11 05:26	11/09/11 17:34	
Naphthalene	ND		6.4	1.3		‡	11/09/11 05:26	11/09/11 17:34	
Acrolein	ND		130			%	11/09/11 05:26	11/09/11 17:34	
Acrylonitrile	ND		130		ug/Kg	‡	11/09/11 05:26	11/09/11 17:34	
Methacrylonitrile	ND		6.4			‡	11/09/11 05:26	11/09/11 17:34	
Isobutyl alcohol	ND		260		ug/Kg	<u>"</u> .	11/09/11 05:26	11/09/11 17:34	
Methyl methacrylate	ND		6.4	0.88	ug/Kg	₩.	11/09/11 05:26	11/09/11 17:34	
Ethyl methacrylate	ND		6.4	0.54		₩.	11/09/11 05:26	11/09/11 17:34	
Vinyl acetate	ND		6.4		ug/Kg		11/09/11 05:26	11/09/11 17:34	
Hexane	ND		6.4	1.3	ug/Kg	₽	11/09/11 05:26	11/09/11 17:34	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30

Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	52 - 124	11/09/11 05:26	11/09/11 17:34	1
Toluene-d8 (Surr)	103	72 - 127	11/09/11 05:26	11/09/11 17:34	1
4-Bromofluorobenzene (Surr)	103	63 - 120	11/09/11 05:26	11/09/11 17:34	1
Dibromofluoromethane (Surr)	105	68 - 121	11/09/11 05:26	11/09/11 17:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4,5-Tetrachlorobenzene	ND		0.38	0.029	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Acenaphthene	ND		0.077	0.0074	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Acetophenone	ND		0.38	0.032	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Acenaphthylene	ND		0.077	0.0088	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Anthracene	0.013	J	0.077	0.0075	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Benzo[a]anthracene	0.053	J	0.077	0.0097	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Benzo[a]pyrene	0.078		0.077	0.0077	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Benzo[b]fluoranthene	0.079		0.077	0.012	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Benzo[g,h,i]perylene	0.060	J	0.077	0.0077	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Benzo[k]fluoranthene	0.059	J	0.077	0.016	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Bis(2-chloroethyl)ether	ND		0.077	0.010	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Bis(2-chloroethoxy)methane	ND		0.38	0.025	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
2,2'-oxybis[1-chloropropane]	ND		0.077	0.0083	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Bis(2-ethylhexyl) phthalate	ND		0.77	0.062	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
4-Bromophenyl phenyl ether	ND		0.38	0.034	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Butyl benzyl phthalate	ND		0.38	0.053	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Carbazole	0.015	J	0.077	0.0071	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
4-Chloroaniline	ND		0.38	0.031	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
2-Chloronaphthalene	ND		0.077	0.0081	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
4-Chlorophenyl phenyl ether	ND		0.38	0.043	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Chrysene	0.062	J	0.077	0.0092	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Dibenz(a,h)anthracene	0.025	J	0.077	0.0086	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Di-n-butyl phthalate	ND		0.38	0.048	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
3,3'-Dichlorobenzidine	ND		0.38	0.041	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Diethyl phthalate	ND		0.38	0.042	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Dimethyl phthalate	ND		0.38	0.042	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
2,4-Dinitrotoluene	ND		0.38	0.031	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
2,6-Dinitrotoluene	ND		0.38	0.040	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Di-n-octyl phthalate	ND		0.38	0.041	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Fluoranthene	0.075	J	0.077	0.0082	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Fluorene	0.017	J	0.077	0.010	mg/Kg		11/12/11 03:15	11/14/11 19:38	
Hexachlorobenzene	ND		0.077	0.0082	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
3,3'-Dimethylbenzidine	ND		2.0	0.021	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
Hexachlorobutadiene	ND		0.077	0.0086		φ.	11/12/11 03:15	11/14/11 19:38	
Hexachlorocyclopentadiene	ND		0.38		mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Hexachloroethane	ND		0.38	0.028	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
Indeno[1,2,3-cd]pyrene	0.055		0.077	0.0079		φ.	11/12/11 03:15	11/14/11 19:38	
Isophorone	ND		0.38		mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	
2-Methylnaphthalene	0.018	J	0.077	0.0069		₽	11/12/11 03:15	11/14/11 19:38	
Naphthalene	0.029		0.077	0.0066			11/12/11 03:15	11/14/11 19:38	
2-Nitroaniline	ND		2.0		mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
3-Nitroaniline	ND		2.0		mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	
4-Nitroaniline	ND		2.0		mg/Kg		11/12/11 03:15	11/14/11 19:38	
Nitrobenzene	ND		0.77		mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	

Client: GAI Consultants

2,4,6-Tribromophenol

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	ND		0.077	0.0090	mg/Kg	*	11/12/11 03:15	11/14/11 19:38	1
N-Nitrosodiphenylamine	ND		0.38	0.036	mg/Kg	\$	11/12/11 03:15	11/14/11 19:38	1
Phenanthrene	0.068	J	0.077	0.012	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
Pyrene	0.063	J	0.077	0.0078	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
4-Chloro-3-methylphenol	ND		0.38	0.036	mg/Kg	\$	11/12/11 03:15	11/14/11 19:38	1
2-Chlorophenol	ND		0.38	0.032	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
Aniline	ND		0.38	0.030	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
2-Methylphenol	ND		0.38	0.027	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
Methylphenol, 3 & 4	ND		0.38	0.038	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
2,4-Dichlorophenol	ND		0.077	0.0077	mg/Kg	₽	11/12/11 03:15	11/14/11 19:38	1
2,4-Dimethylphenol	ND		0.38	0.060	mg/Kg		11/12/11 03:15	11/14/11 19:38	1
2,4-Dinitrophenol	ND		2.0	0.46	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
4,6-Dinitro-2-methylphenol	ND		2.0	0.16	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
2-Nitrophenol	ND		0.38	0.043	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Benzyl alcohol	ND		0.38	0.047	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
4-Nitrophenol	ND		2.0	0.14	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Pentachlorophenol	ND		0.38	0.034	mg/Kg	₩.	11/12/11 03:15	11/14/11 19:38	1
Phenol	ND		0.077	0.0091	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
2,4,5-Trichlorophenol	ND		0.38	0.041	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
2,4,6-Trichlorophenol	ND		0.38	0.058	mg/Kg		11/12/11 03:15	11/14/11 19:38	1
1,1'-Biphenyl	ND		0.38	0.034	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Caprolactam	ND		2.0	0.29	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Benzaldehyde	ND		0.38	0.058	mg/Kg		11/12/11 03:15	11/14/11 19:38	1
Atrazine	ND		0.38	0.038	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Benzoic acid	ND		2.0	0.16	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
Benzidine	ND		7.7	1.6	mg/Kg	\$	11/12/11 03:15	11/14/11 19:38	1
1,4-Dioxane	ND		0.77	0.044	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.38	0.049	mg/Kg	₩	11/12/11 03:15	11/14/11 19:38	1
o-Toluidine	ND		0.38	0.029	mg/Kg	ф	11/12/11 03:15	11/14/11 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	65		25 - 104				11/12/11 03:15	11/14/11 19:38	1
2-Fluorobiphenyl	64		35 - 105				11/12/11 03:15	11/14/11 19:38	1
Terphenyl-d14	64		25 - 127				11/12/11 03:15	11/14/11 19:38	1
Phenol-d5	58		25 - 105				11/12/11 03:15	11/14/11 19:38	1
2-Fluorophenol	27	X	39 - 103				11/12/11 03:15	11/14/11 19:38	1

Method: 8270C - Semivolatile C Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.38	0.029	mg/Kg	\$	11/18/11 04:12	11/23/11 17:59	1
Acenaphthene	ND		0.078	0.0075	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Acetophenone	ND		0.38	0.032	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Acenaphthylene	ND		0.078	0.0089	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Anthracene	0.012	J	0.078	0.0076	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Benzo[a]anthracene	0.055	J	0.078	0.0097	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	1
Benzo[a]pyrene	0.081		0.078	0.0078	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Benzo[b]fluoranthene	0.097		0.078	0.012	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	1
Benzo[g,h,i]perylene	0.070	J	0.078	0.0077	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	1
Benzo[k]fluoranthene	0.049	J	0.078	0.016	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1

35 - 124

6 X

11/12/11 03:15 11/14/11 19:38

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

. reject entre des entrem der i i i entre

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethyl)ether	ND		0.078	0.010	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Bis(2-chloroethoxy)methane	ND		0.38		mg/Kg		11/18/11 04:12	11/23/11 17:59	
2,2'-oxybis[1-chloropropane]	ND		0.078	0.0084		₩	11/18/11 04:12	11/23/11 17:59	
Bis(2-ethylhexyl) phthalate	ND		0.78		mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
4-Bromophenyl phenyl ether	ND		0.38	0.034	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Butyl benzyl phthalate	ND		0.38	0.053	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Carbazole	0.0095	J	0.078	0.0072	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
4-Chloroaniline	ND		0.38	0.031	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2-Chloronaphthalene	ND		0.078	0.0081	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
4-Chlorophenyl phenyl ether	ND		0.38	0.043	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Chrysene	0.064	J	0.078	0.0092	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Dibenz(a,h)anthracene	0.014	J	0.078	0.0086	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Di-n-butyl phthalate	ND		0.38	0.049	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
3,3'-Dichlorobenzidine	ND		0.38	0.041	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Diethyl phthalate	ND		0.38	0.042	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Dimethyl phthalate	ND		0.38	0.042	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2,4-Dinitrotoluene	ND		0.38	0.031	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2,6-Dinitrotoluene	ND		0.38	0.040	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Di-n-octyl phthalate	ND		0.38	0.041	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Fluoranthene	0.086		0.078	0.0083	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Fluorene	0.012	J	0.078	0.010	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Hexachlorobenzene	ND		0.078	0.0083	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
3,3'-Dimethylbenzidine	ND		2.0	0.021	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Hexachlorobutadiene	ND		0.078	0.0087	mg/Kg	₩.	11/18/11 04:12	11/23/11 17:59	
Hexachlorocyclopentadiene	ND		0.38	0.042	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Hexachloroethane	ND		0.38	0.028	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Indeno[1,2,3-cd]pyrene	0.057	J	0.078	0.0080	mg/Kg	₩.	11/18/11 04:12	11/23/11 17:59	
Isophorone	ND		0.38	0.029	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2-Methylnaphthalene	0.017	J	0.078	0.0070	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Naphthalene	0.033	J	0.078	0.0067	mg/Kg	\$	11/18/11 04:12	11/23/11 17:59	
2-Nitroaniline	ND		2.0	0.17	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
3-Nitroaniline	ND		2.0	0.16	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
4-Nitroaniline	ND		2.0	0.16	mg/Kg	\$	11/18/11 04:12	11/23/11 17:59	
Nitrobenzene	ND		0.78	0.032	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
N-Nitrosodi-n-propylamine	ND		0.078	0.0091	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
N-Nitrosodiphenylamine	ND		0.38	0.036	mg/Kg		11/18/11 04:12	11/23/11 17:59	
Phenanthrene	0.081		0.078		mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
Pyrene	0.071	J	0.078	0.0079	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
4-Chloro-3-methylphenol	ND		0.38		mg/Kg		11/18/11 04:12	11/23/11 17:59	
2-Chlorophenol	ND		0.38		mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
Aniline	ND		0.38		mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2-Methylphenol	ND		0.38		mg/Kg	φ.	11/18/11 04:12	11/23/11 17:59	
Methylphenol, 3 & 4	ND		0.38		mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
2,4-Dichlorophenol	ND		0.078	0.0078		₽	11/18/11 04:12	11/23/11 17:59	
2,4-Dimethylphenol	ND		0.38		mg/Kg		11/18/11 04:12	11/23/11 17:59	
2,4-Dinitrophenol	ND		2.0		mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
4,6-Dinitro-2-methylphenol	ND		2.0		mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	
2-Nitrophenol	ND		0.38		mg/Kg		11/18/11 04:12	11/23/11 17:59	
Benzyl alcohol	ND		0.38		mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	
4-Nitrophenol	ND		2.0		mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		0.38	0.035	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Phenol	ND		0.078	0.0092	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
2,4,5-Trichlorophenol	ND		0.38	0.041	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
2,4,6-Trichlorophenol	ND		0.38	0.058	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
1,1'-Biphenyl	ND		0.38	0.035	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Caprolactam	ND		2.0	0.29	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Benzaldehyde	ND		0.38	0.058	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Atrazine	ND	*	0.38	0.038	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Benzoic acid	ND		2.0	0.16	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
Benzidine	ND		7.8	1.6	mg/Kg	\$	11/18/11 04:12	11/23/11 17:59	1
1,4-Dioxane	ND		0.78	0.045	mg/Kg	₽	11/18/11 04:12	11/23/11 17:59	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.38	0.050	mg/Kg	₩	11/18/11 04:12	11/23/11 17:59	1
o-Toluidine	ND		0.38	0.029	mg/Kg	\$	11/18/11 04:12	11/23/11 17:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72		25 _ 104				11/18/11 04:12	11/23/11 17:59	1

3						
Nitrobenzene-d5	72	25 - 104		11/18/11 04:12	11/23/11 17:59	1
2-Fluorobiphenyl	72	35 - 105		11/18/11 04:12	11/23/11 17:59	1
Terphenyl-d14	71	25 - 127		11/18/11 04:12	11/23/11 17:59	1
Phenol-d5	74	25 - 105		11/18/11 04:12	11/23/11 17:59	1
2-Fluorophenol	45	39 - 103		11/18/11 04:12	11/23/11 17:59	1
2,4,6-Tribromophenol	6 X	35 - 124		11/18/11 04:12	11/23/11 17:59	1
Method: 8081A - Organoch	lorine Pesticides (GC)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.0020	0.00026 mg/Kg	□ 11/11/11 03:17	11/30/11 16:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0020	0.00026	mg/Kg	*	11/11/11 03:17	11/30/11 16:28	1
4,4'-DDE	ND		0.0020	0.00030	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
4,4'-DDT	ND		0.0020	0.00029	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
Aldrin	ND		0.0020	0.00035	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
alpha-BHC	ND		0.0020	0.00032	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
beta-BHC	ND		0.0020	0.00051	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
delta-BHC	ND		0.0020	0.00030	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
Dieldrin	ND		0.0020	0.00033	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Endosulfan I	ND		0.0020	0.00037	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
Endosulfan II	ND		0.0020	0.00034	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Endosulfan sulfate	ND		0.0020	0.00020	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Endrin	ND		0.0020	0.00038	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
Diallate	ND		0.039	0.0033	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
gamma-BHC (Lindane)	0.0011	J p	0.0020	0.00034	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
gamma-Chlordane	ND		0.0020	0.00039	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Heptachlor	ND		0.0020	0.00043	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Heptachlor epoxide	ND		0.0020	0.00038	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Methoxychlor	ND		0.0039	0.00041	mg/Kg	₩	11/11/11 03:17	11/30/11 16:28	1
Toxaphene	ND		0.079	0.013	mg/Kg	₽	11/11/11 03:17	11/30/11 16:28	1
Chlordane (technical)	ND		0.020	0.00086	mg/Kg	\$	11/11/11 03:17	11/30/11 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac	
Tetrachloro-m-xylene	75		45 - 130	11/11/11 03:17	11/30/11 16:28	1	
Tetrachloro-m-xylene	74		45 - 130	11/11/11 03:17	11/30/11 16:28	1	
DCB Decachlorobiphenyl (Surr)	79		45 - 130	11/11/11 03:17	11/30/11 16:28	1	
DCB Decachlorobiphenyl (Surr)	90		45 - 130	11/11/11 03:17	11/30/11 16:28	1	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020	0.0029	mg/Kg	\$	11/11/11 03:17	11/13/11 07:02	1
PCB-1221	ND		0.020	0.0037	mg/Kg	₽	11/11/11 03:17	11/13/11 07:02	1
PCB-1232	ND		0.020	0.0033	mg/Kg	₩	11/11/11 03:17	11/13/11 07:02	1
PCB-1242	ND		0.020	0.0032	mg/Kg	₽	11/11/11 03:17	11/13/11 07:02	1
PCB-1248	ND		0.020	0.0018	mg/Kg	₽	11/11/11 03:17	11/13/11 07:02	1
PCB-1254	0.039		0.020	0.0028	mg/Kg	₽	11/11/11 03:17	11/13/11 07:02	1
PCB-1260	ND		0.020	0.0028	mg/Kg	\$	11/11/11 03:17	11/13/11 07:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	88		35 - 140				11/11/11 03:17	11/13/11 07:02	1
DCB Decachlorobiphenyl (Surr)	88		35 - 140				11/11/11 03:17	11/13/11 07:02	1

Analyte	Result Qualifier	KL	MDL	Unit	U	Prepared	Analyzea	DII Fac
2,4-D	ND ND	0.093	0.0064	mg/Kg	₩	11/11/11 03:12	11/18/11 11:53	20
2,4,5-T	ND	0.023	0.0029	mg/Kg	₽	11/11/11 03:12	11/18/11 11:53	20
Silvex (2,4,5-TP)	ND	0.023	0.0025	mg/Kg	₽	11/11/11 03:12	11/18/11 11:53	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2.4-Dichlorophenylacetic acid	46	42 _ 140				11/11/11 03:12	11/18/11 11:29	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	46		42 - 140	11/11/11 03:12	11/18/11 11:29	20
2,4-Dichlorophenylacetic acid	51		42 - 140	11/11/11 03:12	11/18/11 11:53	20

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1	0.18	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Arsenic	0.51	J	1.1	0.25	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Barium	53	В	22	0.056	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Boron	20	J	22	0.29	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Beryllium	0.98	В	0.45	0.017	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Cadmium	ND		0.56	0.027	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Chromium	1.1		0.56	0.095	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Cobalt	0.17	J	5.6	0.099	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Copper	0.60	J	2.8	0.38	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Lead	0.82		0.33	0.16	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Manganese	580	В	1.7	0.054	mg/Kg	₽	11/14/11 10:12	11/15/11 18:52	1
Nickel	0.49	J	4.5	0.43	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Selenium	0.38	J	0.56	0.23	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Silver	ND		0.56	0.065	mg/Kg	₽	11/14/11 10:12	11/15/11 18:52	1
Thallium	0.27	J	1.1	0.23	mg/Kg	₩	11/14/11 10:12	11/15/11 18:52	1
Vanadium	1.9	J	5.6	0.21	mg/Kg	₽	11/14/11 10:12	11/15/11 18:52	1
Zinc	2.7	В	2.2	0.25	mg/Kg	₽	11/14/11 10:12	11/15/11 18:52	1
Tin	ND		11	0.60	ma/Ka	₩	11/14/11 10:12	11/15/11 18:52	1

Method: 7471A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.014	J	0.039	0.013	mg/Kg		11/17/11 03:16	11/17/11 09:58	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	1.1		0.013	0.0021	mg/Kg			11/29/11 14:59	1
Cr (VI)	ND		0.47	0.12	mg/Kg	₽	11/23/11 09:29	11/26/11 12:23	1
Percent Moisture	15		0.10	0.10	%			11/09/11 16:14	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (6')-11-7-11

Date Collected: 11/07/11 09:30 Date Received: 11/08/11 16:09

Lab Sample ID: 180-5679-1

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 85.3

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	4.2		0.59	0.12	mg/Kg	\	11/18/11 13:22	11/19/11 17:27	1
Cyanide, Weak Acid Dissociable	ND		0.60	0.19	mg/Kg	₽	11/16/11 11:49	11/16/11 15:09	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.46	0.12	mg/Kg	\	11/23/11 09:29	11/28/11 15:10	1
- General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61	В	25	5.5	mg/Kg			11/16/11 21:14	2.5
Nitrate as N	0.79	J	1.2	0.37	mg/Kg			11/16/11 21:14	2.5
Nitrite as N	ND		1.2	0.40	mg/Kg			11/16/11 21:14	2.5
Sulfate	6900	В	250	29	mg/Kg			11/17/11 13:06	25

Client Sample ID: B-4 (16')-11-7-11 Lab Sample ID: 180-5679-2

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		21	5.2	ug/Kg	\	11/09/11 05:26	11/09/11 10:24	1
Benzene	ND		5.2	0.71	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Bromodichloromethane	ND		5.2	0.59	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Bromoform	ND		5.2	0.46	ug/Kg	\$	11/09/11 05:26	11/09/11 10:24	1
Bromomethane	ND		5.2	0.77	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
2-Butanone (MEK)	ND		5.2	0.92	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Carbon disulfide	ND		5.2	0.53	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Carbon tetrachloride	ND		5.2	0.47	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Chlorobenzene	ND		5.2	0.79	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Chloroethane	ND		5.2	1.6	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Chloroform	ND		5.2	0.61	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Chloromethane	ND		5.2	0.89	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Dibromochloromethane	ND		5.2	0.74	ug/Kg	₩.	11/09/11 05:26	11/09/11 10:24	1
1,1-Dichloroethane	ND		5.2	0.60	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
1,2-Dichloroethane	ND		5.2	0.64	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
1,1-Dichloroethene	ND		5.2	0.89	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Acetonitrile	ND		100	24	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
1,2-Dichloropropane	ND		5.2	0.57	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
cis-1,3-Dichloropropene	ND		5.2	0.71	ug/Kg		11/09/11 05:26	11/09/11 10:24	1
trans-1,3-Dichloropropene	ND		5.2	0.62	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Ethylbenzene	ND		5.2	0.67	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
2-Hexanone	ND		5.2	0.72	ug/Kg	₩.	11/09/11 05:26	11/09/11 10:24	1
Methylene Chloride	1.8	JB	5.2	0.70	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
4-Methyl-2-pentanone (MIBK)	ND		5.2	0.68	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Bromochloromethane	ND		5.2	0.72	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Styrene	ND		5.2	0.74	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
1,1,2,2-Tetrachloroethane	ND		5.2	0.75	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Tetrachloroethene	1.0	J	5.2	0.71	ug/Kg		11/09/11 05:26	11/09/11 10:24	1
1,1,1-Trichloroethane	ND		5.2	0.51	ug/Kg	≎	11/09/11 05:26	11/09/11 10:24	1
1,1,2-Trichloroethane	ND		5.2	0.87	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (16')-11-7-11

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		5.2	0.69	ug/Kg	\$	11/09/11 05:26	11/09/11 10:24	1
Vinyl chloride	ND		5.2	0.49	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Xylenes, Total	ND		16	2.3	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Cyclohexane	ND		5.2	0.39	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2-Dibromo-3-Chloropropane	ND		5.2	0.78	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2-Dibromoethane (EDB)	ND		5.2	0.90	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Dichlorodifluoromethane	ND		5.2	0.70	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
cis-1,2-Dichloroethene	ND		5.2	0.73	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
trans-1,2-Dichloroethene	ND		5.2	0.62	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Isopropylbenzene	ND		5.2	0.71	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Methyl acetate	ND		5.2	0.94	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Methylcyclohexane	ND		5.2	0.76	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Methyl tert-butyl ether	ND		5.2	0.78	ug/Kg	\$	11/09/11 05:26	11/09/11 10:24	1
Trichlorofluoromethane	ND		5.2	0.96	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2	1.1	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2-Dichlorobenzene	ND		5.2	0.83	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,3-Dichlorobenzene	ND		5.2	0.69	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,4-Dichlorobenzene	ND		5.2	0.67	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2,4-Trichlorobenzene	ND		5.2	0.92	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Toluene	ND		5.2	0.76	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
N-Propylbenzene	ND		5.2	0.80	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2,3-Trichloropropane	ND		5.2	0.97	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,3,5-Trimethylbenzene	ND		5.2	0.70	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
tert-Butylbenzene	ND		5.2	0.74	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
1,2,4-Trimethylbenzene	ND		5.2	0.68	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
sec-Butylbenzene	ND		5.2	0.82	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
n-Butylbenzene	ND		5.2	0.84	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Hexachlorobutadiene	ND		5.2	1.2	ug/Kg	\$	11/09/11 05:26	11/09/11 10:24	1
Naphthalene	3.9	JB	5.2	1.1	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Acrolein	ND		100	7.4	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Acrylonitrile	ND		100	11	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Methacrylonitrile	ND		5.2	0.31	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Isobutyl alcohol	ND		210	27	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Methyl methacrylate	ND		5.2	0.72	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Ethyl methacrylate	ND		5.2	0.44	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Vinyl acetate	ND		5.2	0.37	ug/Kg	₩	11/09/11 05:26	11/09/11 10:24	1
Hexane	1.5	J	5.2	1.1	ug/Kg	₽	11/09/11 05:26	11/09/11 10:24	1
Surrogate	%Recovery	Ovelifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		52 - 124	11/09/11 05:26	11/09/11 10:24	1
Toluene-d8 (Surr)	102		72 - 127	11/09/11 05:26	11/09/11 10:24	1
4-Bromofluorobenzene (Surr)	97		63 - 120	11/09/11 05:26	11/09/11 10:24	1
Dibromofluoromethane (Surr)	81		68 - 121	11/09/11 05:26	11/09/11 10:24	1

Method: 8270C - Semivolatile	Organic Compounds (GC/MS)
------------------------------	---------------------	--------

A	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1	,2,4,5-Tetrachlorobenzene	ND		0.39	0.030	mg/Kg	\$	11/12/11 03:15	11/16/11 16:54	1
4	Acenaphthene	0.026	J	0.079	0.0076	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Α	cetophenone	ND		0.39	0.033	mg/Kg	₩	11/12/11 03:15	11/16/11 16:54	1
Α	cenaphthylene	ND		0.079	0.0091	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
4	Anthracene	0.026	J	0.079	0.0077	mg/Kg	₩	11/12/11 03:15	11/16/11 16:54	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (16')-11-7-11

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.025	J	0.079	0.0099	mg/Kg	-	11/12/11 03:15	11/16/11 16:54	
Benzo[a]pyrene	0.022		0.079	0.0079	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Benzo[b]fluoranthene	0.023	J	0.079	0.012	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Benzo[g,h,i]perylene	0.017	J	0.079	0.0079	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Benzo[k]fluoranthene	0.022	J	0.079	0.016	mg/Kg		11/12/11 03:15	11/16/11 16:54	
Bis(2-chloroethyl)ether	ND		0.079	0.011	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Bis(2-chloroethoxy)methane	ND		0.39	0.026	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
2,2'-oxybis[1-chloropropane]	ND		0.079	0.0085	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Bis(2-ethylhexyl) phthalate	ND		0.79	0.064	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
4-Bromophenyl phenyl ether	ND		0.39	0.034	mg/Kg	₩	11/12/11 03:15	11/16/11 16:54	
Butyl benzyl phthalate	ND		0.39	0.054	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Carbazole	ND		0.079	0.0073	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
4-Chloroaniline	ND		0.39	0.032	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
2-Chloronaphthalene	ND		0.079	0.0083	mg/Kg		11/12/11 03:15	11/16/11 16:54	
4-Chlorophenyl phenyl ether	ND		0.39	0.044	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Chrysene	0.030	J	0.079	0.0094	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Dibenz(a,h)anthracene	ND		0.079	0.0088	mg/Kg	φ-	11/12/11 03:15	11/16/11 16:54	
Di-n-butyl phthalate	ND		0.39		mg/Kg	☼	11/12/11 03:15	11/16/11 16:54	
3,3'-Dichlorobenzidine	ND		0.39	0.042	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Diethyl phthalate	ND		0.39		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Dimethyl phthalate	ND		0.39	0.043	mg/Kg	₩	11/12/11 03:15	11/16/11 16:54	
2,4-Dinitrotoluene	ND		0.39		mg/Kg	☼	11/12/11 03:15	11/16/11 16:54	
2,6-Dinitrotoluene	ND		0.39	0.041	mg/Kg	φ-	11/12/11 03:15	11/16/11 16:54	
Di-n-octyl phthalate	ND		0.39	0.042	mg/Kg	☼	11/12/11 03:15	11/16/11 16:54	
Fluoranthene	0.084		0.079	0.0085		☼	11/12/11 03:15	11/16/11 16:54	
Fluorene	0.071	J	0.079	0.010	mg/Kg		11/12/11 03:15	11/16/11 16:54	
Hexachlorobenzene	ND		0.079	0.0084	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
3,3'-Dimethylbenzidine	ND		2.0	0.021	mg/Kg	☼	11/12/11 03:15	11/16/11 16:54	
Hexachlorobutadiene	ND		0.079	0.0089	mg/Kg		11/12/11 03:15	11/16/11 16:54	
Hexachlorocyclopentadiene	ND		0.39	0.043	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Hexachloroethane	ND		0.39	0.028	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Indeno[1,2,3-cd]pyrene	0.013	J	0.079	0.0082	mg/Kg		11/12/11 03:15	11/16/11 16:54	
Isophorone	ND		0.39	0.030	mg/Kg	☼	11/12/11 03:15	11/16/11 16:54	
2-Methylnaphthalene	0.062	J	0.079	0.0071	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Naphthalene	0.028	J	0.079	0.0068	mg/Kg		11/12/11 03:15	11/16/11 16:54	
2-Nitroaniline	ND		2.0	0.18	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
3-Nitroaniline	ND		2.0		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
4-Nitroaniline	ND		2.0		mg/Kg		11/12/11 03:15	11/16/11 16:54	
Nitrobenzene	ND		0.79		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
N-Nitrosodi-n-propylamine	ND		0.079	0.0093	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
N-Nitrosodiphenylamine	ND		0.39	0.037	mg/Kg		11/12/11 03:15	11/16/11 16:54	
Phenanthrene	0.18		0.079		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Pyrene	0.055	J	0.079	0.0080		₩	11/12/11 03:15	11/16/11 16:54	
4-Chloro-3-methylphenol	ND		0.39		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
2-Chlorophenol	ND		0.39		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
Aniline	ND		0.39		mg/Kg	₩	11/12/11 03:15	11/16/11 16:54	
2-Methylphenol	ND		0.39		mg/Kg		11/12/11 03:15	11/16/11 16:54	
Methylphenol, 3 & 4	ND		0.39		mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	
2,4-Dichlorophenol	ND		0.079	0.0079		₽	11/12/11 03:15	11/16/11 16:54	
2,4-Dimethylphenol	ND		0.39		mg/Kg	φ.	11/12/11 03:15	11/16/11 16:54	

Client: GAI Consultants

Toxaphene

Chlordane (technical)

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (16')-11-7-11

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-2

Matrix: Solid

Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	ND		2.0	0.47	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
4,6-Dinitro-2-methylphenol	ND		2.0	0.16	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
2-Nitrophenol	ND		0.39	0.044	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Benzyl alcohol	ND		0.39	0.048	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
4-Nitrophenol	ND		2.0	0.14	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Pentachlorophenol	ND		0.39	0.035	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Phenol	ND		0.079	0.0094	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
2,4,5-Trichlorophenol	ND		0.39	0.042	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
2,4,6-Trichlorophenol	ND		0.39	0.059	mg/Kg	\$	11/12/11 03:15	11/16/11 16:54	1
1,1'-Biphenyl	ND		0.39	0.035	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Caprolactam	ND		2.0	0.30	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Benzaldehyde	ND		0.39	0.059	mg/Kg	\$	11/12/11 03:15	11/16/11 16:54	1
Atrazine	ND		0.39	0.039	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Benzoic acid	ND		2.0	0.16	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
Benzidine	ND		7.9	1.7	mg/Kg	\$	11/12/11 03:15	11/16/11 16:54	1
1,4-Dioxane	ND		0.79	0.045	mg/Kg	₽	11/12/11 03:15	11/16/11 16:54	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.39	0.051	mg/Kg	\$	11/12/11 03:15	11/16/11 16:54	1
o-Toluidine	ND		0.39	0.029	mg/Kg	φ.	11/12/11 03:15	11/16/11 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80		25 - 104	11/12/11 03:15	11/16/11 16:54	1
2-Fluorobiphenyl	77		35 _ 105	11/12/11 03:15	11/16/11 16:54	1
Terphenyl-d14	65		25 - 127	11/12/11 03:15	11/16/11 16:54	1
Phenol-d5	104		25 _ 105	11/12/11 03:15	11/16/11 16:54	1
2-Fluorophenol	86		39 - 103	11/12/11 03:15	11/16/11 16:54	1
2,4,6-Tribromophenol	55		35 - 124	11/12/11 03:15	11/16/11 16:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0020	0.00026	mg/Kg	<u></u>	11/11/11 03:17	11/30/11 16:47	1
4,4'-DDE	ND		0.0020	0.00030	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
4,4'-DDT	ND		0.0020	0.00029	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Aldrin	ND		0.0020	0.00035	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
alpha-BHC	ND		0.0020	0.00032	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
beta-BHC	ND		0.0020	0.00051	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
delta-BHC	0.00054	Jр	0.0020	0.00030	mg/Kg	\$	11/11/11 03:17	11/30/11 16:47	1
Dieldrin	ND		0.0020	0.00033	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Endosulfan I	ND		0.0020	0.00037	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Endosulfan II	ND		0.0020	0.00035	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Endosulfan sulfate	ND		0.0020	0.00020	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Endrin	ND		0.0020	0.00038	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Diallate	ND		0.039	0.0033	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
gamma-BHC (Lindane)	0.0014	J	0.0020	0.00035	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
gamma-Chlordane	ND		0.0020	0.00039	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Heptachlor	ND		0.0020	0.00044	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Heptachlor epoxide	ND		0.0020	0.00038	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1
Methoxychlor	ND		0.0039	0.00041	mg/Kg	₽	11/11/11 03:17	11/30/11 16:47	1

11/30/11 16:47

11/30/11 16:47

11/11/11 03:17

11/11/11 03:17

0.079

0.020

0.013 mg/Kg

0.00087 mg/Kg

ND

ND

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (16')-11-7-11

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-2 Matrix: Solid

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	60	45 - 130	11/11/11 03:17	11/30/11 16:47	1
Tetrachloro-m-xylene	67	45 - 130	11/11/11 03:17	11/30/11 16:47	1
DCB Decachlorobiphenyl (Surr)	78	45 - 130	11/11/11 03:17	11/30/11 16:47	1
DCB Decachlorobiphenyl (Surr)	89	45 - 130	11/11/11 03:17	11/30/11 16:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020	0.0029	mg/Kg	*	11/11/11 03:17	11/13/11 07:30	1
PCB-1221	ND		0.020	0.0037	mg/Kg	₽	11/11/11 03:17	11/13/11 07:30	1
PCB-1232	ND		0.020	0.0034	mg/Kg	₽	11/11/11 03:17	11/13/11 07:30	1
PCB-1242	ND		0.020	0.0032	mg/Kg	₽	11/11/11 03:17	11/13/11 07:30	1
PCB-1248	ND		0.020	0.0019	mg/Kg	₽	11/11/11 03:17	11/13/11 07:30	1
PCB-1254	ND		0.020	0.0028	mg/Kg	₽	11/11/11 03:17	11/13/11 07:30	1
PCB-1260	ND		0.020	0.0028	mg/Kg		11/11/11 03:17	11/13/11 07:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepare	d	Analyzed	Dil Fac
Tetrachloro-m-xylene	81		35 - 140	11/11/11 0	3:17	11/13/11 07:30	1
DCB Decachlorobiphenyl (Surr)	87		35 - 140	11/11/11 0	3:17	11/13/11 07:30	1

Method: 8151A - Herbicides (GC)		Ovelifier	DI.	MDI	IImi4		Drawarad	Amalumad	Dil Faa
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.094	0.0065	mg/Kg	₽	11/11/11 03:12	11/18/11 11:53	20
2,4,5-T	ND		0.024	0.0030	mg/Kg	₽	11/11/11 03:12	11/18/11 11:53	20
Silvex (2,4,5-TP)	ND		0.024	0.0025	mg/Kg	₩	11/11/11 03:12	11/18/11 11:53	20
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	44		42 - 140				11/11/11 03:12	11/18/11 11:53	20

2,4-Dichlorophenylacetic acid	9	42 - 140				11/11/11 03:12	11/18/11 12:18	20
Method: 6010B - Metals (ICP)								
Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	D	1.2	0.19	mg/Kg	\$	11/14/11 10:12	11/15/11 18:58	1
Arsenic 1.	2	1.2	0.26	mg/Kg	₩	11/14/11 10:12	11/15/11 18:58	1
Barium 28	0 B	24	0.059	mg/Kg	₩	11/14/11 10:12	11/15/11 18:58	1
Boron 9	4	24	0.30	mg/Kg	₽	11/14/11 10:12	11/15/11 18:58	1
Beryllium 5.	5 B	0.47	0.018	mg/Kg	₩	11/14/11 10:12	11/15/11 18:58	1
Cadmium N	D	0.59	0.028	mg/Kg	₽	11/14/11 10:12	11/15/11 18:58	1
Chromium 2.	3	1.2	0.20	mg/Kg	\$	11/14/11 10:12	11/16/11 12:28	2
Cobalt	D	5.9	0.11	mg/Kg	₽	11/14/11 10:12	11/15/11 18:58	1
Copper 0.8	1 J	3.0	0.41	mg/Kg	₽	11/14/11 10:12	11/15/11 18:58	1
Lead N	D	0.36	0.17	mg/Kg	\$	11/14/11 10:12	11/15/11 18:58	1
Manganese 340	0 B	3.6	0.11	mg/Kg	₽	11/14/11 10:12	11/16/11 12:28	2
Nickel N	D	4.7	0.46	mg/Kg	₽	11/14/11 10:12	11/15/11 18:58	1
Selenium 1.	4	1.2	0.49	mg/Kg	₩	11/14/11 10:12	11/16/11 12:28	2
Silver	D	1.2	0.14	mg/Kg	₩	11/14/11 10:12	11/16/11 12:28	2
Thallium N	D	2.4	0.49	mg/Kg	₽	11/14/11 10:12	11/16/11 12:28	2
Vanadium 5.	7 J	5.9	0.22	mg/Kg	\$	11/14/11 10:12	11/15/11 18:58	1
Zinc 0.9	0 JB	2.4	0.26	mg/Kg	₩	11/14/11 10:12	11/15/11 18:58	1
Tin 1.	2 J	12	0.64	mg/Kg	₩	11/14/11 10:12	11/15/11 18:58	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4 (16')-11-7-11

Date Collected: 11/07/11 10:30 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-2 **Matrix: Solid**

Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.037	0.012	mg/Kg	₩	11/17/11 03:16	11/17/11 10:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	2.3		0.013	0.0021	mg/Kg			11/29/11 14:59	1
Cr (VI)	ND		0.48	0.12	mg/Kg	₽	11/23/11 09:29	11/26/11 12:24	1
Percent Moisture	16		0.10	0.10	%			11/09/11 16:14	1
Cyanide, Total	4.1		0.58	0.12	mg/Kg	₩	11/18/11 13:22	11/19/11 17:27	1
Cyanide, Weak Acid Dissociable	0.20	J	0.60	0.19	mg/Kg	₩	11/16/11 11:52	11/16/11 15:12	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.47	0.12	mg/Kg	<u></u>	11/23/11 09:29	11/28/11 15:11	1

0.51 11/16/11 21:42 Nitrate as N 0.45 J 0.15 mg/Kg Nitrite as N ND 0.51 0.16 mg/Kg 11/16/11 21:42 100 11/16/11 21:56 Sulfate 12 mg/Kg 10 3800 B

RL

10

MDL Unit

2.2 mg/Kg

D

Prepared

Result Qualifier

71 B

Client Sample ID: B-6 (6')-11-8-11

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09

General Chemistry - Soluble

Analyte

Chloride

Lab Sample ID: 180-5679-3 **Matrix: Solid**

Analyzed

11/16/11 21:42

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		23	5.6	ug/Kg	\	11/09/11 05:26	11/09/11 10:47	1
Benzene	ND		5.6	0.76	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Bromodichloromethane	ND		5.6	0.63	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Bromoform	ND		5.6	0.50	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Bromomethane	ND		5.6	0.83	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
2-Butanone (MEK)	ND		5.6	1.0	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Carbon disulfide	ND		5.6	0.58	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Carbon tetrachloride	ND		5.6	0.50	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Chlorobenzene	ND		5.6	0.86	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Chloroethane	ND		5.6	1.7	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Chloroform	ND		5.6	0.66	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Chloromethane	ND		5.6	0.96	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Dibromochloromethane	ND		5.6	0.80	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,1-Dichloroethane	ND		5.6	0.65	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,2-Dichloroethane	ND		5.6	0.69	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,1-Dichloroethene	ND		5.6	0.96	ug/Kg	\$	11/09/11 05:26	11/09/11 10:47	1
Acetonitrile	ND		110	26	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
1,2-Dichloropropane	ND		5.6	0.61	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
cis-1,3-Dichloropropene	ND		5.6	0.77	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
trans-1,3-Dichloropropene	ND		5.6	0.68	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Ethylbenzene	ND		5.6	0.73	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
2-Hexanone	ND		5.6	0.78	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Methylene Chloride	2.8	JB	5.6	0.76	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-6 (6')-11-8-11

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-3

Matrix: Solid

Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.6	0.74	ug/Kg	*	11/09/11 05:26	11/09/11 10:47	1
Bromochloromethane	ND		5.6	0.78	ug/Kg	*	11/09/11 05:26	11/09/11 10:47	1
Styrene	ND		5.6	0.80	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,1,2,2-Tetrachloroethane	ND		5.6	0.81	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Tetrachloroethene	ND		5.6	0.77	ug/Kg	\$	11/09/11 05:26	11/09/11 10:47	1
1,1,1-Trichloroethane	ND		5.6	0.55	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,1,2-Trichloroethane	ND		5.6	0.94	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Trichloroethene	ND		5.6	0.74	ug/Kg	\$	11/09/11 05:26	11/09/11 10:47	1
Vinyl chloride	ND		5.6	0.53	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Xylenes, Total	ND		17	2.5	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Cyclohexane	ND		5.6	0.42	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,2-Dibromo-3-Chloropropane	ND		5.6	0.85	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
1,2-Dibromoethane (EDB)	ND		5.6	0.97	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Dichlorodifluoromethane	ND		5.6	0.75	ug/Kg	φ.	11/09/11 05:26	11/09/11 10:47	1
cis-1,2-Dichloroethene	ND		5.6	0.79	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
trans-1,2-Dichloroethene	ND		5.6	0.67	ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Isopropylbenzene	ND		5.6	0.77	ug/Kg	φ.	11/09/11 05:26	11/09/11 10:47	1
Methyl acetate	ND		5.6	1.0	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Methylcyclohexane	ND		5.6	0.82	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Methyl tert-butyl ether	ND		5.6	0.84	ug/Kg	-	11/09/11 05:26	11/09/11 10:47	1
Trichlorofluoromethane	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,2-Dichlorobenzene	ND		5.6		ug/Kg	-	11/09/11 05:26	11/09/11 10:47	1
1,3-Dichlorobenzene	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,4-Dichlorobenzene	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,2,4-Trichlorobenzene	ND		5.6	1.0	ug/Kg	-	11/09/11 05:26	11/09/11 10:47	1
Toluene	ND		5.6			₽	11/09/11 05:26	11/09/11 10:47	1
N-Propylbenzene	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
1,2,3-Trichloropropane	ND		5.6	1.0	ug/Kg	- -	11/09/11 05:26	11/09/11 10:47	1
1,3,5-Trimethylbenzene	ND		5.6		ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
tert-Butylbenzene	ND		5.6	0.80	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
1,2,4-Trimethylbenzene	ND		5.6		ug/Kg	.	11/09/11 05:26	11/09/11 10:47	· · · · · · · · · · · · · · · · · · ·
sec-Butylbenzene	ND		5.6			₽	11/09/11 05:26	11/09/11 10:47	1
n-Butylbenzene	ND		5.6		ug/Kg	*	11/09/11 05:26	11/09/11 10:47	1
Hexachlorobutadiene	ND		5.6		ug/Kg	· · · · · · · · · · · · · · ·	11/09/11 05:26	11/09/11 10:47	
Naphthalene	9.8	D	5.6		ug/Kg	*	11/09/11 05:26	11/09/11 10:47	1
Acrolein	ND		110		ug/Kg ug/Kg	₽	11/09/11 05:26	11/09/11 10:47	1
Acrylonitrile	ND		110		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 10:47	
•	ND		5.6			₽			
Methacrylonitrile Isobutyl alcohol	ND ND		230		ug/Kg ug/Kg	₩	11/09/11 05:26 11/09/11 05:26	11/09/11 10:47 11/09/11 10:47	1
Methyl methacrylate	ND		5.6 5.6		ug/Kg ug/Kg	₩	11/09/11 05:26 11/09/11 05:26	11/09/11 10:47	1
Ethyl methacrylate	ND ND		5.6 5.6		ug/Kg ug/Kg	₩		11/09/11 10:47	1
Vinyl acetate	ND		5.6				11/09/11 05:26	11/09/11 10:47	1
Hexane	ND		5.6	1.1	ug/Kg	₩	11/09/11 05:26	11/09/11 10:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		52 - 124				11/09/11 05:26	11/09/11 10:47	
Toluene-d8 (Surr)	105		72 - 127				11/09/11 05:26	11/09/11 10:47	1

11/09/11 10:47

11/09/11 10:47

11/09/11 05:26

11/09/11 05:26

63 - 120

68 - 121

91

89

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

riojecticite. Goo cianton Gor i rio. re

Client Sample ID: B-6 (6')-11-8-11

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4,5-Tetrachlorobenzene	ND		0.74	0.057	mg/Kg	\$	11/12/11 03:15	11/14/11 20:18	
Acenaphthene	2.0		0.15	0.014	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Acetophenone	0.064	J	0.74	0.061	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Acenaphthylene	1.2		0.15	0.017	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Anthracene	4.9		0.15	0.015	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Benzo[a]anthracene	14		0.15	0.019	mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
Benzo[a]pyrene	12		0.15	0.015	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Benzo[b]fluoranthene	14		0.15	0.023	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Benzo[g,h,i]perylene	8.5		0.15	0.015	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Benzo[k]fluoranthene	5.2		0.15	0.030	mg/Kg		11/12/11 03:15	11/14/11 20:18	
Bis(2-chloroethyl)ether	ND		0.15	0.020	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Bis(2-chloroethoxy)methane	ND		0.74	0.049	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
2,2'-oxybis[1-chloropropane]	ND		0.15	0.016	mg/Kg		11/12/11 03:15	11/14/11 20:18	
Bis(2-ethylhexyl) phthalate	0.25	J	1.5	0.12	mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
4-Bromophenyl phenyl ether	ND		0.74		mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Butyl benzyl phthalate	ND		0.74		mg/Kg	ф	11/12/11 03:15	11/14/11 20:18	
Carbazole	2.5		0.15		mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
4-Chloroaniline	ND.		0.74		mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
2-Chloronaphthalene	ND		0.15		mg/Kg		11/12/11 03:15	11/14/11 20:18	
4-Chlorophenyl phenyl ether	ND		0.74			₩	11/12/11 03:15	11/14/11 20:18	
Chrysene	12		0.15		mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
Dibenz(a,h)anthracene	2.4		0.15		mg/Kg		11/12/11 03:15	11/14/11 20:18	
Di-n-butyl phthalate	ND		0.74		mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
3,3'-Dichlorobenzidine	ND		0.74	0.079	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Diethyl phthalate	ND		0.74		mg/Kg		11/12/11 03:15	11/14/11 20:18	
Dimethyl phthalate	ND		0.74	0.081	mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
2,4-Dinitrotoluene	ND		0.74		mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
2,6-Dinitrotoluene	ND		0.74				11/12/11 03:15	11/14/11 20:18	
	ND ND		0.74		mg/Kg		11/12/11 03:15	11/14/11 20:18	
Di-n-octyl phthalate			0.74		mg/Kg		11/12/11 03:15	11/14/11 20:18	
Fluoranthene	18		0.15		mg/Kg				
Fluorene	2.2				mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
Hexachlorobenzene	ND		0.15		mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
3,3'-Dimethylbenzidine	ND		3.8		mg/Kg	-	11/12/11 03:15	11/14/11 20:18	
Hexachlorobutadiene	ND		0.15		mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	
Hexachlorocyclopentadiene	ND		0.74		mg/Kg		11/12/11 03:15	11/14/11 20:18	
Hexachloroethane	ND		0.74		mg/Kg	. .	11/12/11 03:15	11/14/11 20:18	
ndeno[1,2,3-cd]pyrene	7.3		0.15		mg/Kg	‡	11/12/11 03:15	11/14/11 20:18	
sophorone	ND		0.74		mg/Kg	*	11/12/11 03:15	11/14/11 20:18	
2-Methylnaphthalene	1.4		0.15		mg/Kg	<u></u> .	11/12/11 03:15	11/14/11 20:18	
Naphthalene	2.1		0.15		mg/Kg	*	11/12/11 03:15	11/14/11 20:18	
2-Nitroaniline	ND		3.8		mg/Kg		11/12/11 03:15	11/14/11 20:18	
3-Nitroaniline	ND		3.8		mg/Kg	<u>.</u> .	11/12/11 03:15	11/14/11 20:18	
4-Nitroaniline	ND		3.8		mg/Kg	\$	11/12/11 03:15	11/14/11 20:18	
Nitrobenzene	ND		1.5		mg/Kg	\$	11/12/11 03:15	11/14/11 20:18	
N-Nitrosodi-n-propylamine	ND		0.15		mg/Kg		11/12/11 03:15	11/14/11 20:18	
N-Nitrosodiphenylamine	ND		0.74		mg/Kg	*	11/12/11 03:15	11/14/11 20:18	
Phenanthrene	16		0.15		mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	
Pyrene	17		0.15	0.015	mg/Kg	.	11/12/11 03:15	11/14/11 20:18	
4-Chloro-3-methylphenol	ND		0.74	0.069	mg/Kg	₩	11/12/11 03:15	11/14/11 20:18	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-6 (6')-11-8-11

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aniline	ND		0.74	0.058	mg/Kg	*	11/12/11 03:15	11/14/11 20:18	2
2-Methylphenol	0.13	J	0.74	0.052	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Methylphenol, 3 & 4	0.27	J	0.74	0.073	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
2,4-Dichlorophenol	ND		0.15	0.015	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
2,4-Dimethylphenol	0.12	J	0.74	0.12	mg/Kg	*	11/12/11 03:15	11/14/11 20:18	2
2,4-Dinitrophenol	ND		3.8	0.89	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
4,6-Dinitro-2-methylphenol	ND		3.8	0.30	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
2-Nitrophenol	ND		0.74	0.082	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Benzyl alcohol	ND		0.74	0.090	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
4-Nitrophenol	ND		3.8	0.27	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Pentachlorophenol	ND		0.74	0.067	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Phenol	0.17		0.15	0.018	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
2,4,5-Trichlorophenol	ND		0.74	0.080	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
2,4,6-Trichlorophenol	ND		0.74	0.11	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
1,1'-Biphenyl	0.33	J	0.74	0.067	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Caprolactam	ND		3.8	0.56	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Benzaldehyde	ND		0.74	0.11	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Atrazine	ND		0.74	0.073	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Benzoic acid	ND		3.8	0.31	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
Benzidine	ND		15	3.1	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
1,4-Dioxane	ND		1.5	0.086	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.74	0.096	mg/Kg	₽	11/12/11 03:15	11/14/11 20:18	2
o-Toluidine	ND		0.74	0.056	mg/Kg	ф.	11/12/11 03:15	11/14/11 20:18	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		25 - 104	11/12/11 03:15	11/14/11 20:18	2
2-Fluorobiphenyl	73		35 - 105	11/12/11 03:15	11/14/11 20:18	2
Terphenyl-d14	73		25 - 127	11/12/11 03:15	11/14/11 20:18	2
Phenol-d5	81		25 - 105	11/12/11 03:15	11/14/11 20:18	2
2-Fluorophenol	66		39 - 103	11/12/11 03:15	11/14/11 20:18	2
2,4,6-Tribromophenol	41		35 - 124	11/12/11 03:15	11/14/11 20:18	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0095	0.0012	mg/Kg	\	11/11/11 03:17	11/30/11 17:06	5
4,4'-DDE	ND		0.0095	0.0014	mg/Kg	₩	11/11/11 03:17	11/30/11 17:06	5
4,4'-DDT	ND		0.0095	0.0014	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Aldrin	ND		0.0095	0.0017	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
alpha-BHC	ND		0.0095	0.0015	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
beta-BHC	ND		0.0095	0.0024	mg/Kg	☼	11/11/11 03:17	11/30/11 17:06	5
delta-BHC	ND		0.0095	0.0014	mg/Kg	₩	11/11/11 03:17	11/30/11 17:06	5
Dieldrin	ND		0.0095	0.0016	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Endosulfan I	ND		0.0095	0.0018	mg/Kg	₩	11/11/11 03:17	11/30/11 17:06	5
Endosulfan II	ND		0.0095	0.0016	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Endosulfan sulfate	ND		0.0095	0.00097	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Endrin	ND		0.0095	0.0018	mg/Kg	☼	11/11/11 03:17	11/30/11 17:06	5
Diallate	ND		0.18	0.016	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
gamma-BHC (Lindane)	0.10		0.0095	0.0016	mg/Kg	☼	11/11/11 03:17	11/30/11 17:06	5
gamma-Chlordane	ND		0.0095	0.0018	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Heptachlor	ND		0.0095	0.0021	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-6 (6')-11-8-11

Method: 8151A - Herbicides (GC)

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	ND		0.0095	0.0018	mg/Kg	\$	11/11/11 03:17	11/30/11 17:06	5
Methoxychlor	ND		0.018	0.0019	mg/Kg	₽	11/11/11 03:17	11/30/11 17:06	5
Toxaphene	ND		0.38	0.062	mg/Kg	₩	11/11/11 03:17	11/30/11 17:06	5
Chlordane (technical)	ND		0.095	0.0041	mg/Kg	\$	11/11/11 03:17	11/30/11 17:06	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71		45 - 130				11/11/11 03:17	11/30/11 17:06	5
Tetrachloro-m-xylene	58		45 - 130				11/11/11 03:17	11/30/11 17:06	5
DCB Decachlorobiphenyl (Surr)	310	X	45 - 130				11/11/11 03:17	11/30/11 17:06	5
DCB Decachlorobiphenyl (Surr)	65	D	45 - 130				11/11/11 03:17	11/30/11 17:06	5

Method: 8082 - Polychlorina	ited Biphenyls (PCBs) by Ga	s Chromatograp	hy					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.019	0.0028	mg/Kg	₩	11/11/11 03:17	11/13/11 07:58	1
PCB-1221	ND	0.019	0.0036	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1
PCB-1232	ND	0.019	0.0032	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1
PCB-1242	ND	0.019	0.0030	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1
PCB-1248	ND	0.019	0.0018	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1
PCB-1254	0.035	0.019	0.0027	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1
PCB-1260	ND	0.019	0.0027	mg/Kg	₽	11/11/11 03:17	11/13/11 07:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		35 - 140	11/11/11 03:17	11/13/11 07:58	1
DCB Decachlorobiphenyl (Surr)	94		35 - 140	11/11/11 03:17	11/13/11 07:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.090	0.0062	mg/Kg	₽	11/11/11 03:12	11/18/11 13:31	20
2,4,5-T	ND		0.023	0.0028	mg/Kg	₽	11/11/11 03:12	11/18/11 13:31	20
Silvex (2,4,5-TP)	ND		0.023	0.0024	mg/Kg	₽	11/11/11 03:12	11/18/11 13:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	45		42 - 140				11/11/11 03:12	11/18/11 13:07	20
2,4-Dichlorophenylacetic acid	42		42 - 140				11/11/11 03:12	11/18/11 13:31	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.89	J	1.1	0.18	mg/Kg	\	11/14/11 10:28	11/15/11 19:04	1
Arsenic	4.6		1.1	0.25	mg/Kg	₩	11/14/11 10:28	11/15/11 19:04	1
Barium	140	В	22	0.056	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Boron	33		22	0.29	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Beryllium	3.5	В	0.45	0.017	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Cadmium	0.75		0.56	0.027	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Chromium	28		0.56	0.095	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Cobalt	3.0	J	5.6	0.099	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Copper	31		2.8	0.38	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Lead	140		0.33	0.16	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Manganese	2000	В	1.7	0.054	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Nickel	17		4.5	0.43	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Selenium	0.81		0.56	0.23	mg/Kg	\$	11/14/11 10:28	11/15/11 19:04	1
Silver	ND		0.56	0.065	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Thallium	ND		1.1	0.23	mg/Kg	₩	11/14/11 10:28	11/15/11 19:04	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-6 (6')-11-8-11

Date Collected: 11/08/11 09:00 Date Received: 11/08/11 16:09

Lab Sample ID: 180-5679-3

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vanadium	11		5.6	0.21	mg/Kg	<u> </u>	11/14/11 10:28	11/15/11 19:04	1
Zinc	130	В	2.2	0.25	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Tin	2.3	J	11	0.60	mg/Kg	₽	11/14/11 10:28	11/15/11 19:04	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.6		0.035	0.012	mg/Kg	₩	11/17/11 03:16	11/17/11 10:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	26		0.013	0.0021	mg/Kg			11/29/11 14:59	1
Cr (VI)	2.2		0.45	0.11	mg/Kg	₽	11/23/11 09:29	11/26/11 12:29	1
Percent Moisture	11		0.10	0.10	%			11/09/11 16:14	1
Cyanide, Total	4.6		0.55	0.11	mg/Kg	\$	11/18/11 13:22	11/19/11 17:32	1
Cyanide, Weak Acid Dissociable	0.41	J	0.58	0.19	mg/Kg	\$	11/16/11 11:52	11/16/11 15:12	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	1.9		0.45	0.11	mg/Kg	\	11/23/11 09:29	11/28/11 15:16	

RL

10

0.50

0.50

10

Result Qualifier

61 B

5.9

0.56

170 B

MDL Unit

2.2 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

1.2 mg/Kg

D

Prepared

Client Sample ID: B-5W-11-8-11

Date Collected: 11/08/11 12:30

General Chemistry - Soluble

Analyte

Chloride

Nitrate as N

Nitrite as N

Sulfate

Date Received: 11/08/11 16:09

Lab Sample ID: 180-5679-4

Analyzed

11/16/11 22:10

11/16/11 22:10

11/16/11 22:10

11/16/11 22:10

Matrix: Water

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		63	31	ug/L			11/21/11 13:58	12.5
Benzene	210		13	1.3	ug/L			11/21/11 13:58	12.5
Bromodichloromethane	ND		13	1.6	ug/L			11/21/11 13:58	12.5
Bromoform	ND		13	2.4	ug/L			11/21/11 13:58	12.5
Bromomethane	ND		13	3.9	ug/L			11/21/11 13:58	12.5
2-Butanone (MEK)	ND		63	6.8	ug/L			11/21/11 13:58	12.5
Carbon disulfide	ND		13	2.7	ug/L			11/21/11 13:58	12.5
Carbon tetrachloride	ND		13	1.7	ug/L			11/21/11 13:58	12.5
Chlorobenzene	ND		13	1.7	ug/L			11/21/11 13:58	12.5
Chloroethane	ND		13	2.7	ug/L			11/21/11 13:58	12.5
Chloroform	ND		13	2.1	ug/L			11/21/11 13:58	12.5
Dibromochloromethane	ND		13	1.7	ug/L			11/21/11 13:58	12.5
1,2-Dibromo-3-Chloropropane	ND		13	1.8	ug/L			11/21/11 13:58	12.5
1,2-Dibromoethane (EDB)	ND		13	2.3	ug/L			11/21/11 13:58	12.5
1,1-Dichloroethane	ND		13	1.5	ug/L			11/21/11 13:58	12.5
1,2-Dichloroethane	ND		13	2.6	ug/L			11/21/11 13:58	12.5
1,1-Dichloroethene	ND		13	3.7	ug/L			11/21/11 13:58	12.5

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5W-11-8-11 Lab Sample ID: 180-5679-4 Date Collected: 11/08/11 12:30

Matrix: Water

TestAmerica Job ID: 180-5622-1

Date Received: 11/08/11 16:09

1,2-Dichloropropane ND 13 1,2 yg/L 11/21/11 13:58 12 yg/L	Method: 8260B - Volatile Organic Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene ND 13 2,3 ug/L 11/21/11 13.58 12 trans-1,3-Dichloropropene ND 13 1,9 ug/L 11/21/11 13.58 12 Ethylbenzene 28 13 2.8 ug/L 11/21/11 13.58 12 2-Hexanone ND 63 2.0 ug/L 11/21/11 13.58 12 Hethylen Chloride 4.2 J 13 1.9 ug/L 11/21/11 13.58 12 Styrone 5.6 J 13 1.2 ug/L 11/21/11 13.58 12 Styrone 5.6 J 13 1.2 ug/L 11/21/11 13.58 12 Styrone 5.6 J 13 1.9 ug/L 11/21/11 13.58 12 Styrone 5.6 J 13 1.9 ug/L 11/21/11 13.58 12 Toluore 21 13 1.9 ug/L 11/21/11 13.58 12 Toluore 21 13 2.5	trans-1,2-Dichloroethene	ND ND	13	2.1	ug/L			11/21/11 13:58	12.5
Tamas 1.3-Dichloropropene	1,2-Dichloropropane	ND	13	1.2	ug/L			11/21/11 13:58	12.5
Ethylbenzene	cis-1,3-Dichloropropene	ND	13	2.3	ug/L			11/21/11 13:58	12.5
Methylene Chloride	trans-1,3-Dichloropropene	ND	13	1.9	ug/L			11/21/11 13:58	12.5
Methylene Chloride 4.2 J 13 1.9 ug/L 11/21/11 13:58 12 4-Methyl-2-pentanone (MIBK) ND 63 6.6 ug/L 11/21/11 13:58 12 Styrene 5.6 J 13 1.2 ug/L 11/21/11 13:58 12 1,1,2,2-Tetrachloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Tetrachloroethane ND 13 1.9 ug/L 11/21/11 13:58 12 Totlene 21 13 1.9 ug/L 11/21/11 13:58 12 1,1,1-Trichloroethane ND 13 3.6 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vynyl chloride ND 13 2.8 <	Ethylbenzene	28	13	2.8	ug/L			11/21/11 13:58	12.5
4-Methyl-2-pentanone (MIBK) ND 63 6.6 ug/L 11/21/11 13:58 12 Styrene 5.6 J 13 1.2 ug/L 11/21/11 13:58 12 Tetrachloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Totuene 21 13 1.9 ug/L 11/21/11 13:58 12 Totuene 21 13 1.9 ug/L 11/21/11 13:58 12 Tichloroethane ND 13 3.6 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58	2-Hexanone	ND	63	2.0	ug/L			11/21/11 13:58	12.5
Styrene 5.6 J 13 1.2 ug/L 11/21/11 13:58 12 1,1,2,2-Etrachloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Tetrachloroethane ND 13 1.9 ug/L 11/21/11 13:58 12 Toluene 21 13 1.9 ug/L 11/21/11 13:58 12 1,1,1-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vily chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vily chloride ND 13 3.0 ug/L 11	Methylene Chloride	4.2 J	13	1.9	ug/L			11/21/11 13:58	12.5
1,1,2,2-Tetrachloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Tetrachloroethene ND 13 1.9 ug/L 11/21/11 13:58 12 Toluene 21 13 1.9 ug/L 11/21/11 13:58 12 1,1,1-Trichloroethane ND 13 3.6 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichlorofluoromethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 <td>4-Methyl-2-pentanone (MIBK)</td> <td>ND</td> <td>63</td> <td>6.6</td> <td>ug/L</td> <td></td> <td></td> <td>11/21/11 13:58</td> <td>12.5</td>	4-Methyl-2-pentanone (MIBK)	ND	63	6.6	ug/L			11/21/11 13:58	12.5
Tetrachloroethene	Styrene	5.6 J	13	1.2	ug/L			11/21/11 13:58	12.5
Toluene 21 13 1.9 ug/L 11/21/11 13:58 12 1,1,1-Trichloroethane ND 13 3.6 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichlorofuloromethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12 Uchyl chloride ND 13 3.2 ug/L 11/21/11 13:58 12	1,1,2,2-Tetrachloroethane	ND	13	2.5	ug/L			11/21/11 13:58	12.5
1,1,1-Trichloroethane ND 13 3.6 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethane ND 13 1.8 ug/L 11/21/11 13:58 12 Trichlorofluoromethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Vylones, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.0 ug/L 11/21/11 13:58 12 Isopropylbenzene ND 13 2.4 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 2.7 ug/L 11/21/11 13:58 12 Methyl gerberoer ND 13 3.3 ug/L 11/21/11 13:58	Tetrachloroethene	ND	13	1.9	ug/L			11/21/11 13:58	12.5
1,1,2-Trichloroethane ND 13 2.5 ug/L 11/21/11 13:58 12 Trichloroethene ND 13 1.8 ug/L 11/21/11 13:58 12 Trichloroethene ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Vylenes, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Stopropybenzene ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl cetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl cetate ND 13 3.3 ug/L 11/21/11 13:58 12	Toluene	21	13	1.9	ug/L			11/21/11 13:58	12.5
Trichloroethene ND 13 1.8 ug/L 11/21/11 13:58 12 Trichlorofluoromethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Xylenes, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl scerbush ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl scerbush ND 13 3.0 ug/L 11/21/11 13:58 12 Methyl scerbush ND 13 3.0 ug/L 11/21/11 13:58	1,1,1-Trichloroethane	ND	13	3.6	ug/L			11/21/11 13:58	12.5
Trichlorofluoromethane ND 13 2.5 ug/L 11/21/11 13:58 12 Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Xylenes, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Isopropylbenzene ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11	1,1,2-Trichloroethane	ND	13	2.5	ug/L			11/21/11 13:58	12.5
Vinyl chloride ND 13 2.8 ug/L 11/21/11 13:58 12 Xylenes, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Isopropylbenzene ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl gerbeare ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl terbetra ND 13 2.3 ug/L 11/21/11 13:58 12 Methyl terbetra ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 4.0 ug/L 11/21/11 13:58 12<	Trichloroethene	ND	13	1.8	ug/L			11/21/11 13:58	12.5
Xylenes, Total 43 38 6.1 ug/L 11/21/11 13:58 12 Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Isopropylbenzene ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl cyclohexane ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 1,1-2-Trichloro-1,2,2-trifluoroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 3.4 ug/L <td>Trichlorofluoromethane</td> <td>ND</td> <td>13</td> <td>2.5</td> <td>ug/L</td> <td></td> <td></td> <td>11/21/11 13:58</td> <td>12.5</td>	Trichlorofluoromethane	ND	13	2.5	ug/L			11/21/11 13:58	12.5
Cyclohexane ND 13 3.2 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene cis-1,2-Dichloroethene ND 13 3.0 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene ND 13 2.0 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl cyclohexane ND 13 3.3 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 cis-1,2-Dichloroethene ND 13 13 4.0 ug/L	Vinyl chloride	ND	13	2.8	ug/L			11/21/11 13:58	12.5
cis-1,2-Dichloroethene ND 13 3.0 ug/L 11/21/11 13:58 12 Dichlorodifluoromethane ND 13 2.4 ug/L 11/21/11 13:58 12 Isopropylbenzene ND 13 2.0 ug/L 11/21/11 13:58 12 Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methyl cyclohexane ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 4.0 ug/L 11/21/11 13:58 12 1,1,2-Trichloroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 3.4 <td< td=""><td>Xylenes, Total</td><td>43</td><td>38</td><td>6.1</td><td>ug/L</td><td></td><td></td><td>11/21/11 13:58</td><td>12.5</td></td<>	Xylenes, Total	43	38	6.1	ug/L			11/21/11 13:58	12.5
Dichlorodifluoromethane	Cyclohexane	ND	13	3.2	ug/L			11/21/11 13:58	12.5
Isopropylbenzene	cis-1,2-Dichloroethene	ND	13	3.0	ug/L			11/21/11 13:58	12.5
Methyl acetate ND 13 1.7 ug/L 11/21/11 13:58 12 Methylcyclohexane ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 1,1,2-Trichloro-1,2,2-trifluoroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 7oluene-d8 (Surr) 90 71 - 118 11/	Dichlorodifluoromethane	ND	13	2.4	ug/L			11/21/11 13:58	12.5
Methylcyclohexane ND 13 3.3 ug/L 11/21/11 13:58 12 Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 1,1,2-Trichloro-1,2,2-trifluoroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 7oluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12	Isopropylbenzene	ND	13	2.0	ug/L			11/21/11 13:58	12.5
Methyl tert-butyl ether ND 13 2.3 ug/L 11/21/11 13:58 12 1,1,2-Trichloro-1,2,2-trifluoroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2-4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 7-Oluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	Methyl acetate	ND	13	1.7	ug/L			11/21/11 13:58	12.5
1,1,2-Trichloro-1,2,2-trifluoroethane ND 13 4.0 ug/L 11/21/11 13:58 12 1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 7oluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	Methylcyclohexane	ND	13	3.3	ug/L			11/21/11 13:58	12.5
1,2-Dichlorobenzene ND 13 1.9 ug/L 11/21/11 13:58 12 1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 70 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	Methyl tert-butyl ether	ND	13	2.3	ug/L			11/21/11 13:58	12.5
1,3-Dichlorobenzene ND 13 1.3 ug/L 11/21/11 13:58 12 1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 70 luene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	13	4.0	ug/L			11/21/11 13:58	12.5
1,4-Dichlorobenzene ND 13 2.6 ug/L 11/21/11 13:58 12 1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,2-Dichlorobenzene	ND	13	1.9	ug/L			11/21/11 13:58	12.5
1,2,4-Trichlorobenzene ND 13 3.4 ug/L 11/21/11 13:58 12 Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fe 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,3-Dichlorobenzene	ND	13	1.3	ug/L			11/21/11 13:58	12.5
Chloromethane ND 13 3.5 ug/L 11/21/11 13:58 12 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,4-Dichlorobenzene	ND	13	2.6	ug/L			11/21/11 13:58	12.5
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,2,4-Trichlorobenzene	ND	13	3.4	ug/L			11/21/11 13:58	12.5
1,2-Dichloroethane-d4 (Surr) 96 64 - 135 11/21/11 13:58 12 Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	Chloromethane	ND	13	3.5	ug/L			11/21/11 13:58	12.5
Toluene-d8 (Surr) 90 71 - 118 11/21/11 13:58 12 4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 97 70 - 118 11/21/11 13:58 12	1,2-Dichloroethane-d4 (Surr)	96	64 - 135			-		11/21/11 13:58	12.5
	Toluene-d8 (Surr)	90	71 - 118					11/21/11 13:58	12.5
Dibromofluoromethane (Surr) 94 70 - 128 11/21/11 13:58 12	4-Bromofluorobenzene (Surr)	97	70 - 118					11/21/11 13:58	12.5
	Dibromofluoromethane (Surr)	94	70 - 128					11/21/11 13:58	12.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.3		0.20	0.014	ug/L		11/11/11 08:11	11/14/11 14:44	1
Acenaphthylene	3.2		0.20	0.015	ug/L		11/11/11 08:11	11/14/11 14:44	1
Acetophenone	0.99		0.98	0.078	ug/L		11/11/11 08:11	11/14/11 14:44	1
Anthracene	0.20		0.20	0.15	ug/L		11/11/11 08:11	11/14/11 14:44	1
Atrazine	ND		0.98	0.087	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzaldehyde	ND	*	0.98	0.15	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzo[a]anthracene	0.26		0.20	0.014	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzo[b]fluoranthene	0.22		0.20	0.015	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzo[k]fluoranthene	0.25		0.20	0.054	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzo[g,h,i]perylene	0.23		0.20	0.015	ug/L		11/11/11 08:11	11/14/11 14:44	1
Benzo[a]pyrene	0.13	J	0.20	0.013	ug/L		11/11/11 08:11	11/14/11 14:44	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5W-11-8-11

Date Collected: 11/08/11 12:30 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethoxy)methane	ND		0.98	0.057	ug/L		11/11/11 08:11	11/14/11 14:44	
Bis(2-chloroethyl)ether	ND		0.20	0.025	ug/L		11/11/11 08:11	11/14/11 14:44	
Bis(2-ethylhexyl) phthalate	ND		2.0	1.2	ug/L		11/11/11 08:11	11/14/11 14:44	
Butyl benzyl phthalate	ND		0.98	0.14	ug/L		11/11/11 08:11	11/14/11 14:44	
1,1'-Biphenyl	1.7		0.98	0.041	ug/L		11/11/11 08:11	11/14/11 14:44	
Caprolactam	ND		4.9	1.2	ug/L		11/11/11 08:11	11/14/11 14:44	
Carbazole	4.6		0.20	0.015			11/11/11 08:11	11/14/11 14:44	
Chrysene	0.27		0.20	0.014	ug/L		11/11/11 08:11	11/14/11 14:44	
2-Chloronaphthalene	ND		0.20	0.015	ug/L		11/11/11 08:11	11/14/11 14:44	
2-Chlorophenol	ND		0.98		ug/L		11/11/11 08:11	11/14/11 14:44	
2,4-Dichlorophenol	ND		0.20	0.033			11/11/11 08:11	11/14/11 14:44	
2,4-Dimethylphenol	5.5		0.98	0.084	ug/L		11/11/11 08:11	11/14/11 14:44	
2,4-Dinitrophenol	ND		4.9		ug/L		11/11/11 08:11	11/14/11 14:44	
2,4-Dinitrotoluene	ND		0.98	0.053			11/11/11 08:11	11/14/11 14:44	
2,6-Dinitrotoluene	ND		0.98	0.078			11/11/11 08:11	11/14/11 14:44	
2-Methylnaphthalene	17		0.20	0.012	-		11/11/11 08:11	11/14/11 14:44	
2-Methylphenol	5.8		0.98	0.085			11/11/11 08:11	11/14/11 14:44	
2-Nitroaniline	ND		4.9		ug/L		11/11/11 08:11	11/14/11 14:44	
2-Nitrophenol	ND		0.98		ug/L		11/11/11 08:11	11/14/11 14:44	
2,2'-oxybis[1-chloropropane]	ND		0.20	0.019			11/11/11 08:11	11/14/11 14:44	
2,4,5-Trichlorophenol	ND		0.98		ug/L		11/11/11 08:11	11/14/11 14:44	
2,4,6-Trichlorophenol	ND		0.98		ug/L		11/11/11 08:11	11/14/11 14:44	
4-Nitroaniline	ND		4.9		ug/L ug/L		11/11/11 08:11	11/14/11 14:44	
4-Nitrophenol	ND		4.9	0.63	ug/L		11/11/11 08:11	11/14/11 14:44	
4-Chlorophenyl phenyl ether	ND		0.98		ug/L		11/11/11 08:11	11/14/11 14:44	
Methylphenol, 3 & 4	11		0.98		ug/L ug/L		11/11/11 08:11	11/14/11 14:44	
4,6-Dinitro-2-methylphenol	ND		4.9		ug/L		11/11/11 08:11	11/14/11 14:44	
4-Chloroaniline	ND		0.98	0.087	_		11/11/11 08:11	11/14/11 14:44	
4-Chloro-3-methylphenol	ND		0.98	0.074			11/11/11 08:11	11/14/11 14:44	
4-Bromophenyl phenyl ether	ND		0.98	0.062	_		11/11/11 08:11	11/14/11 14:44	
Dibenz(a,h)anthracene	0.30		0.20	0.015	=		11/11/11 08:11	11/14/11 14:44	
Dibenzofuran			0.20	0.015			11/11/11 08:11	11/14/11 14:44	
Di-n-butyl phthalate	2.0 ND		0.98		ug/L ug/L		11/11/11 08:11	11/14/11 14:44	
Diethyl phthalate	ND		0.98	0.12	-		11/11/11 08:11	11/14/11 14:44	
Dimethyl phthalate	ND		0.98	0.075			11/11/11 08:11	11/14/11 14:44	
Di-n-octyl phthalate			0.98		-			11/14/11 14:44	
* '	ND ND		0.98	0.20			11/11/11 08:11		
3,3'-Dichlorobenzidine				0.11			11/11/11 08:11	11/14/11 14:44	
3-Nitroaniline	ND		4.9	0.32			11/11/11 08:11	11/14/11 14:44	
Fluoranthene	0.24		0.20	0.016			11/11/11 08:11	11/14/11 14:44	
Fluorene	0.86		0.20	0.021			11/11/11 08:11	11/14/11 14:44	
Hexachlorobenzene	ND		0.20	0.018	_		11/11/11 08:11	11/14/11 14:44	
Hexachlorobutadiene	ND		0.20	0.016	•		11/11/11 08:11	11/14/11 14:44	
Hexachlorocyclopentadiene	ND		0.98	0.051			11/11/11 08:11	11/14/11 14:44	
Hexachloroethane	ND		0.98	0.062	-		11/11/11 08:11	11/14/11 14:44	
Indeno[1,2,3-cd]pyrene	0.24		0.20	0.020	-		11/11/11 08:11	11/14/11 14:44	
Isophorone	ND		0.98	0.063			11/11/11 08:11	11/14/11 14:44	
Naphthalene	120	E	0.20	0.014			11/11/11 08:11	11/14/11 14:44	
Nitrobenzene	ND		2.0	0.083	_		11/11/11 08:11	11/14/11 14:44	
N-Nitrosodiphenylamine	ND		0.98	0.084	ug/L		11/11/11 08:11	11/14/11 14:44	
N-Nitrosodi-n-propylamine	ND		0.20	0.030	ug/L		11/11/11 08:11	11/14/11 14:44	

Client: GAI Consultants

Terphenyl-d14

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5W-11-8-11

Date Collected: 11/08/11 12:30 Date Received: 11/08/11 16:09 Lab Sample ID: 180-5679-4

11/14/11 14:44

11/11/11 08:11

TestAmerica Job ID: 180-5622-1

Matrix: Water

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued) Analyte Result Qualifier MDL Unit Dil Fac RLD Prepared Analyzed Pyrene 0.14 0.20 0.015 ug/L 11/11/11 08:11 11/14/11 14:44 11/14/11 14:44 0.20 0.057 ug/L 11/11/11 08:11 **Phenol** 9.9 Phenanthrene 3.0 0.20 0.042 ug/L 11/11/11 08:11 11/14/11 14:44 Pentachlorophenol ND 0.98 0.065 ug/L 11/11/11 08:11 11/14/11 14:44 %Recovery Surrogate Qualifier Limits Dil Fac Prepared Analyzed 2,4,6-Tribromophenol 93 16 - 122 11/11/11 08:11 11/14/11 14:44 2-Fluorobiphenyl 47 19 - 107 11/11/11 08:11 11/14/11 14:44 2-Fluorophenol 48 10 - 111 11/11/11 08:11 11/14/11 14:44 Nitrobenzene-d5 51 23 - 112 11/11/11 08:11 11/14/11 14:44 Phenol-d5 53 15 - 112 11/11/11 08:11 11/14/11 14:44

10 - 132

65

-	00		.0 .02				7 77 77 77 00.77		,
Method: 8270C LL - Semivolatile		_							
Analyte	1.1	Qualifier	RL 4.9	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene				0.35	ug/L		11/11/11 08:11	11/15/11 13:52	25
Acetaphanea	2.9 ND	J	4.9		ug/L		11/11/11 08:11	11/15/11 13:52	25 25
Acetophenone			25		ug/L		11/11/11 08:11	11/15/11 13:52	
Anthracene	ND		4.9		ug/L		11/11/11 08:11	11/15/11 13:52	25
Atrazine	ND		25		ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzaldehyde	ND	*	25		ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzo[a]anthracene	ND		4.9		ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzo[b]fluoranthene	ND		4.9	0.38	ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzo[k]fluoranthene	ND		4.9		ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzo[g,h,i]perylene	ND		4.9	0.37	ug/L		11/11/11 08:11	11/15/11 13:52	25
Benzo[a]pyrene	ND		4.9	0.33	ug/L		11/11/11 08:11	11/15/11 13:52	25
Bis(2-chloroethoxy)methane	ND		25	1.4	ug/L		11/11/11 08:11	11/15/11 13:52	25
Bis(2-chloroethyl)ether	ND		4.9	0.62	ug/L		11/11/11 08:11	11/15/11 13:52	25
Bis(2-ethylhexyl) phthalate	ND		49	31	ug/L		11/11/11 08:11	11/15/11 13:52	25
Butyl benzyl phthalate	ND		25	3.5	ug/L		11/11/11 08:11	11/15/11 13:52	25
1,1'-Biphenyl	1.5	J	25	1.0	ug/L		11/11/11 08:11	11/15/11 13:52	25
Caprolactam	ND		120	29	ug/L		11/11/11 08:11	11/15/11 13:52	25
Carbazole	4.1	J	4.9	0.39	ug/L		11/11/11 08:11	11/15/11 13:52	25
Chrysene	ND		4.9	0.34	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Chloronaphthalene	ND		4.9	0.37	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Chlorophenol	ND		25	4.0	ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4-Dichlorophenol	ND		4.9	0.82	ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4-Dimethylphenol	3.7	J	25	2.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4-Dinitrophenol	ND		120	15	ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4-Dinitrotoluene	ND		25	1.3	ug/L		11/11/11 08:11	11/15/11 13:52	25
2,6-Dinitrotoluene	ND		25	2.0	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Methylnaphthalene	15		4.9	0.30	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Methylphenol	6.5	J	25	2.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Nitroaniline	ND		120	8.6	ug/L		11/11/11 08:11	11/15/11 13:52	25
2-Nitrophenol	ND		25		ug/L		11/11/11 08:11	11/15/11 13:52	25
2,2'-oxybis[1-chloropropane]	ND		4.9		ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4,5-Trichlorophenol	ND		25		ug/L		11/11/11 08:11	11/15/11 13:52	25
2,4,6-Trichlorophenol	ND		25		ug/L		11/11/11 08:11	11/15/11 13:52	25
4-Nitroaniline	ND		120		ug/L		11/11/11 08:11	11/15/11 13:52	25
	ND		120		ug/L		11/11/11 08:11	11/15/11 13:52	25
4-Nitrophenol									

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-5W-11-8-11 Lab Sample ID: 180-5679-4

Date Collected: 11/08/11 12:30 Matrix: Water

Date Received: 11/08/11 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylphenol, 3 & 4	8.8	J	25	2.2	ug/L		11/11/11 08:11	11/15/11 13:52	25
4,6-Dinitro-2-methylphenol	ND		120	5.4	ug/L		11/11/11 08:11	11/15/11 13:52	25
4-Chloroaniline	ND		25	2.2	ug/L		11/11/11 08:11	11/15/11 13:52	25
4-Chloro-3-methylphenol	ND		25	1.8	ug/L		11/11/11 08:11	11/15/11 13:52	25
4-Bromophenyl phenyl ether	ND		25	1.6	ug/L		11/11/11 08:11	11/15/11 13:52	25
Dibenz(a,h)anthracene	ND		4.9	0.38	ug/L		11/11/11 08:11	11/15/11 13:52	25
Dibenzofuran	2.2	J	25	1.5	ug/L		11/11/11 08:11	11/15/11 13:52	25
Di-n-butyl phthalate	ND		25	3.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
Diethyl phthalate	ND		25	3.6	ug/L		11/11/11 08:11	11/15/11 13:52	25
Dimethyl phthalate	ND		25	1.9	ug/L		11/11/11 08:11	11/15/11 13:52	25
Di-n-octyl phthalate	ND		25	5.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
3,3'-Dichlorobenzidine	ND		25	2.7	ug/L		11/11/11 08:11	11/15/11 13:52	25
3-Nitroaniline	ND		120	7.9	ug/L		11/11/11 08:11	11/15/11 13:52	25
Fluoranthene	ND		4.9	0.40	ug/L		11/11/11 08:11	11/15/11 13:52	25
Fluorene	0.88	J	4.9	0.53	ug/L		11/11/11 08:11	11/15/11 13:52	25
Hexachlorobenzene	ND		4.9	0.45	ug/L		11/11/11 08:11	11/15/11 13:52	25
Hexachlorobutadiene	ND		4.9	0.41	ug/L		11/11/11 08:11	11/15/11 13:52	25
Hexachlorocyclopentadiene	ND		25	1.3	ug/L		11/11/11 08:11	11/15/11 13:52	25
Hexachloroethane	ND		25	1.5	ug/L		11/11/11 08:11	11/15/11 13:52	25
Indeno[1,2,3-cd]pyrene	ND		4.9	0.49	ug/L		11/11/11 08:11	11/15/11 13:52	25
Isophorone	ND		25	1.6	ug/L		11/11/11 08:11	11/15/11 13:52	25
Naphthalene	250		4.9	0.34	ug/L		11/11/11 08:11	11/15/11 13:52	25
Nitrobenzene	ND		49	2.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
N-Nitrosodiphenylamine	ND		25	2.1	ug/L		11/11/11 08:11	11/15/11 13:52	25
N-Nitrosodi-n-propylamine	ND		4.9	0.75	ug/L		11/11/11 08:11	11/15/11 13:52	25
Pyrene	ND		4.9	0.38	ug/L		11/11/11 08:11	11/15/11 13:52	25
Phenol	8.6		4.9	1.4	ug/L		11/11/11 08:11	11/15/11 13:52	25
Phenanthrene	2.7	J	4.9	1.0	ug/L		11/11/11 08:11	11/15/11 13:52	25
Pentachlorophenol	ND		25	1.6	ug/L		11/11/11 08:11	11/15/11 13:52	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	52	D	16 - 122				11/11/11 08:11	11/15/11 13:52	25
2-Fluorobiphenyl	44	D	19 - 107				11/11/11 08:11	11/15/11 13:52	25
2-Fluorophenol	36	D	10 - 111				11/11/11 08:11	11/15/11 13:52	25
Nitrobenzene-d5	40	D	23 - 112				11/11/11 08:11	11/15/11 13:52	25
Phenol-d5	44	D	15 - 112				11/11/11 08:11	11/15/11 13:52	25
Terphenyl-d14	59	D	10 - 132				11/11/11 08:11	11/15/11 13:52	25
Method: 6010B - Lead									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010B - Lead									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	500		200	9.7	ug/L		11/09/11 16:47	11/10/11 17:26	1
Antimony	1.8	J	10	1.3	ug/L		11/09/11 16:47	11/10/11 17:26	1
Arsenic	6.1	J	10	2.7	ug/L		11/09/11 16:47	11/10/11 17:26	1
Barium	91	J	200	0.62	ug/L		11/09/11 16:47	11/10/11 17:26	1
Boron	41	J	200	1.3	ug/L		11/09/11 16:47	11/10/11 17:26	1
Beryllium	ND		4.0	0.23	ug/L		11/09/11 16:47	11/10/11 17:26	1
Cadmium	ND		5.0	0.13	ug/L		11/09/11 16:47	11/10/11 17:26	1
Calcium	240000		5000	9.7	ug/L		11/09/11 16:47	11/10/11 17:26	1
Chromium	ND		5.0	0.57	ug/L		11/09/11 16:47	11/10/11 17:26	1
Cobalt	ND		50	0.40	ug/L		11/09/11 16:47	11/10/11 17:26	1
Copper	ND		25	2.7	ug/L		11/09/11 16:47	11/10/11 17:26	1

TestAmerica Job ID: 180-5622-1

TestAmerica Pittsburgh 12/14/2011

Client Sample ID: B-5W-11-8-11

Date Collected: 11/08/11 12:30 Date Received: 11/08/11 16:09 Lab Sample ID: 180-5679-4

Matrix: Water

Matrix: Water

Method: 6010B - Lead (Continued) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	280		100	12	ug/L		11/09/11 16:47	11/10/11 17:26	1
Lead	ND		3.0	1.3	ug/L		11/09/11 16:47	11/10/11 17:26	1
Magnesium	ND		5000	21	ug/L		11/09/11 16:47	11/10/11 17:26	1
Manganese	ND		15	0.68	ug/L		11/09/11 16:47	11/10/11 17:26	1
Nickel	ND		40	1.6	ug/L		11/09/11 16:47	11/10/11 17:26	1
Potassium	36000		5000	750	ug/L		11/09/11 16:47	11/10/11 17:26	1
Selenium	14		5.0	3.0	ug/L		11/09/11 16:47	11/10/11 17:26	1
Silver	ND		5.0	0.68	ug/L		11/09/11 16:47	11/10/11 17:26	1
Sodium	200000		5000	220	ug/L		11/09/11 16:47	11/10/11 17:26	1
Thallium	2.5	J	10	2.4	ug/L		11/09/11 16:47	11/10/11 17:26	1
Vanadium	5.0	J	50	1.9	ug/L		11/09/11 16:47	11/10/11 17:26	1
Zinc	5.8	JB	20	2.5	ug/L		11/09/11 16:47	11/10/11 17:26	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.12	J	0.20	0.038	ug/L		11/21/11 07:20	11/22/11 14:53	1
_									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil and Grease)	3.2	J	4.8	1.4	mg/L		11/15/11 11:49	11/16/11 11:24	1
Ammonia, distilled	15	В	1.0	0.33	mg/L		11/09/11 16:00	11/10/11 14:54	10
Chemical Oxygen Demand	43		10	3.9	mg/L			11/09/11 16:59	1
Cyanide, Total	54		10	1.5	ug/L		11/11/11 12:00	11/14/11 09:16	1
pH	11.8	HF	0.100	0.100	SU			11/09/11 07:54	1
Total Suspended Solids	ND		4.0	2.0	mg/L			11/09/11 14:15	1

Client Sample ID: B-4W-11-8-11 Lab Sample ID: 180-5679-5

Date Collected: 11/08/11 14:00

Date Received: 11/08/11 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		100	50	ug/L			11/21/11 14:22	20
Benzene	320		20	2.1	ug/L			11/21/11 14:22	20
Bromodichloromethane	ND		20	2.6	ug/L			11/21/11 14:22	20
Bromoform	ND		20	3.8	ug/L			11/21/11 14:22	20
Bromomethane	ND		20	6.3	ug/L			11/21/11 14:22	20
2-Butanone (MEK)	ND		100	11	ug/L			11/21/11 14:22	20
Carbon disulfide	ND		20	4.2	ug/L			11/21/11 14:22	20
Carbon tetrachloride	ND		20	2.7	ug/L			11/21/11 14:22	20
Chlorobenzene	ND		20	2.7	ug/L			11/21/11 14:22	20
Chloroethane	ND		20	4.3	ug/L			11/21/11 14:22	20
Chloroform	ND		20	3.4	ug/L			11/21/11 14:22	20
Dibromochloromethane	ND		20	2.7	ug/L			11/21/11 14:22	20
1,2-Dibromo-3-Chloropropane	ND		20	2.8	ug/L			11/21/11 14:22	20
1,2-Dibromoethane (EDB)	ND		20	3.6	ug/L			11/21/11 14:22	20
1,1-Dichloroethane	ND		20	2.3	ug/L			11/21/11 14:22	20
1,2-Dichloroethane	ND		20	4.2	ug/L			11/21/11 14:22	20
1,1-Dichloroethene	ND		20	5.9	ug/L			11/21/11 14:22	20
trans-1,2-Dichloroethene	ND		20	3.4	ug/L			11/21/11 14:22	20

Client: GAI Consultants

1,4-Dichlorobenzene

Chloromethane

1,2,4-Trichlorobenzene

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4W-11-8-11

Date Collected: 11/08/11 14:00 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-5

Matrix: Water

cis-1,3-Dichloropropene ND 20 3.7 ug/L 11/21/11 14:22 2 trans-1,3-Dichloropropene ND 20 3.0 ug/L 11/21/11 14:22 2 Ethylbenzene 31 20 4.5 ug/L 11/21/11 14:22 2 2-Hexanone ND 100 3.2 ug/L 11/21/11 14:22 2 4-Methyle-Chloride 7.8 J 20 3.0 ug/L 11/21/11 14:22 2 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 2 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 2 Styrene 17 J 20 1.9 ug/L 11/21/11 14:22 2 Styrene 17 J 20 4.0 ug/L 11/21/11 14:22 2 Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene ND 20 3.0 ug/L 11/21/11 14:22 22 Ethylbenzene 31 20 4.5 ug/L 11/21/11 14:22 22 2-Hexanone ND 100 3.2 ug/L 11/21/11 14:22 22 2-Hexanone ND 100 3.2 ug/L 11/21/11 14:22 22 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 22 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 23 5tyrene 17 J 20 1.9 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.0 ug/L 11/21/11 14:22 23 5tyrene ND 20 3.0 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.0 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.5 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.5 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.5 ug/L 11/21/11 14:22 23 5tyrene ND 20 4.7 ug/L 11/21/11 14:22 23 5tyrene ND 20 3.3 ug/L 11/21/11 14:22 23 5tyrene ND 20 3.3 ug/L 11/21/11 14:22 23 5tyrene ND 20 3.7 ug/L 11/21/11 14:22 32 5tyrene ND 30 ug/L 11/21/11 1	1,2-Dichloropropane	ND		20	1.9	ug/L			11/21/11 14:22	20
Ethylbenzene 31 20 4.5 ug/L 11/21/11 14:22 2 2-Hexanone ND 100 3.2 ug/L 11/21/11 14:22 2 Methylene Chloride 7.8 J 20 3.0 ug/L 11/21/11 14:22 2 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 2 5tyrene 17 J 20 1.9 ug/L 11/21/11 14:22 2 5tyrene 17 J 20 1.9 ug/L 11/21/11 14:22 2 1,1,2,2-Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 2 Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 2 Toluene 47 20 3.0 ug/L 11/21/11 14:22 2 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 2	cis-1,3-Dichloropropene	ND		20	3.7	ug/L			11/21/11 14:22	20
2-Hexanone ND 100 3.2 ug/L 11/21/11 14:22 22 Methylene Chloride 7.8 J 20 3.0 ug/L 11/21/11 14:22 22 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 22 5 tyrene 17 J 20 1.9 ug/L 11/21/11 14:22 22 5 tyrene 17 J 20 1.9 ug/L 11/21/11 14:22 22 5 tyrene ND 20 3.0 ug/L 11/21/11 14:22 22 5 tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 22 5 toluene 47 20 3.0 ug/L 11/21/11 14:22 22 5 toluene ND 20 5.7 ug/L 11/21/11 14:22 22 5 til.1,1-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichlorofluoromethane ND 20 4.0 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 4.7 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 22 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.7 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND 20 3.0 ug/L 11/21/11 14:22 24 5 trichloroethane ND	trans-1,3-Dichloropropene	ND		20	3.0	ug/L			11/21/11 14:22	20
Methylene Chloride 7.8 J 20 3.0 ug/L 11/21/11 14:22 2 4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 2 Styrene 17 J 20 1.9 ug/L 11/21/11 14:22 2 1,1,2,2-Tetrachloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 2 Totluene 47 20 3.0 ug/L 11/21/11 14:22 2 Totluene ND 20 5.7 ug/L 11/21/11 14:22 2 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.5 ug/L <	Ethylbenzene	31		20	4.5	ug/L			11/21/11 14:22	20
4-Methyl-2-pentanone (MIBK) ND 100 11 ug/L 11/21/11 14:22 21 11,2,2-Tetrachloroethane ND 20 4.0 ug/L 11/21/11 14:22 21 11/22/11 14:22 22 11/2,2-Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 21 11/21/11 14:22 22 11/21/11 14:22 23 11/21/11 14:22 24 11/21/11 14:22 25 11/21/11 14:22 26 11/21/11 14:22 27 11/21/11 14:22 28 11/21/11 14:22 29 11/21/11 14:22 20 11/21/11 14:22 20 11/21/11 14:22 21 11/21/11 14	2-Hexanone	ND		100	3.2	ug/L			11/21/11 14:22	20
Styrene 17 J 20 1.9 ug/L 11/21/11 14:22 20 1,1,2,2-Tetrachloroethane ND 20 4.0 ug/L 11/21/11 14:22 20 Tetrachloroethane ND 20 3.0 ug/L 11/21/11 14:22 20 Toluene 47 20 3.0 ug/L 11/21/11 14:22 20 1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 20 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 20 Trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 20 Trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 20 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 20 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 20 Cyclohexane ND 20 4.7 ug/L 11/21/11 14:22 20	Methylene Chloride	7.8	J	20	3.0	ug/L			11/21/11 14:22	20
1,1,2,2-Tetrachloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Tetrachloroethene ND 20 3.0 ug/L 11/21/11 14:22 2 Toluene 47 20 3.0 ug/L 11/21/11 14:22 2 1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 2 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 2 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 2 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 2 Dichloroethane ND 20 3.9 ug/L 11/21/11	4-Methyl-2-pentanone (MIBK)	ND		100	11	ug/L			11/21/11 14:22	20
Tetrachloroethene ND 20 3.0 ug/L 11/21/11 14:22 2/10 1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 2/10 1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 2/10 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2/10 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2/10 1/10 1/10 1/10 1/10 1/10 1/10 1/	Styrene	17	J	20	1.9	ug/L			11/21/11 14:22	20
Toluene 47 20 3.0 ug/L 11/21/11 14:22 2 1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 2 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 1richloroethane ND 20 2.9 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethane ND 20 4.5 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 5.1 ug/L 11/21/11 14:22 2 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 2 Cyclohexane ND 20 4.7 ug/L 11/21/11 14:22 2	1,1,2,2-Tetrachloroethane	ND		20	4.0	ug/L			11/21/11 14:22	20
1,1,1-Trichloroethane ND 20 5.7 ug/L 11/21/11 14:22 22 1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 22 Trichloroethane ND 20 2.9 ug/L 11/21/11 14:22 22 Trichlorofluoromethane ND 20 4.0 ug/L 11/21/11 14:22 22 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 22 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 22 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 22 cis-1,2-Dichloroethane ND 20 4.7 ug/L 11/21/11 14:22 22 cis-1,2-Dichloroethane ND 20 3.9 ug/L 11/21/11 14:22 22 bisopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 22 Methyl certable ND 20 3.7 ug/L 11/21/11 14:22 24 Methyl tert-butyl ether ND 20 3.7	Tetrachloroethene	ND		20	3.0	ug/L			11/21/11 14:22	20
1,1,2-Trichloroethane ND 20 4.0 ug/L 11/21/11 14:22 2 Trichloroethene ND 20 2.9 ug/L 11/21/11 14:22 2 Trichlorofluoromethane ND 20 4.0 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 2 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 2 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 2 Cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 2 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 2 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 2 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 2 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 2 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 2 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4	Toluene	47		20	3.0	ug/L			11/21/11 14:22	20
Trichloroethene ND 20 2.9 ug/L 11/21/11 14:22 2 Trichlorofluoromethane ND 20 4.0 ug/L 11/21/11 14:22 2 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 2 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 2 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 2 cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 2 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 2 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 2 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 2 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 2 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 2 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 3.0 ug/L 11/21/11 14:22 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>20</td> <td>5.7</td> <td>ug/L</td> <td></td> <td></td> <td>11/21/11 14:22</td> <td>20</td>	1,1,1-Trichloroethane	ND		20	5.7	ug/L			11/21/11 14:22	20
Trichlorofluoromethane ND 20 4.0 ug/L 11/21/11 14:22 20 Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 20 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 20 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 20 cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 20 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methyl cyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 1	1,1,2-Trichloroethane	ND		20	4.0	ug/L			11/21/11 14:22	20
Vinyl chloride ND 20 4.5 ug/L 11/21/11 14:22 20 Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 20 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 20 cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 20 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Trichloroethene	ND		20	2.9	ug/L			11/21/11 14:22	20
Xylenes, Total 61 60 9.8 ug/L 11/21/11 14:22 20 Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 20 cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 20 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Trichlorofluoromethane	ND		20	4.0	ug/L			11/21/11 14:22	20
Cyclohexane ND 20 5.1 ug/L 11/21/11 14:22 20 cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 20 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Vinyl chloride	ND		20	4.5	ug/L			11/21/11 14:22	20
cis-1,2-Dichloroethene ND 20 4.7 ug/L 11/21/11 14:22 20 Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Xylenes, Total	61		60	9.8	ug/L			11/21/11 14:22	20
Dichlorodifluoromethane ND 20 3.9 ug/L 11/21/11 14:22 20 Isopropylbenzene ND 20 3.3 ug/L 11/21/11 14:22 20 Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Cyclohexane	ND		20	5.1	ug/L			11/21/11 14:22	20
Isopropylbenzene	cis-1,2-Dichloroethene	ND		20	4.7	ug/L			11/21/11 14:22	20
Methyl acetate ND 20 2.8 ug/L 11/21/11 14:22 20 dethylcyclohexane Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 dethylcyclohexane Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 dethylcyclohexane 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 dethylcyclohexane 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20 dethylcyclohexane	Dichlorodifluoromethane	ND		20	3.9	ug/L			11/21/11 14:22	20
Methylcyclohexane ND 20 5.2 ug/L 11/21/11 14:22 20 Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Isopropylbenzene	ND		20	3.3	ug/L			11/21/11 14:22	20
Methyl tert-butyl ether ND 20 3.7 ug/L 11/21/11 14:22 20 1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Methyl acetate	ND		20	2.8	ug/L			11/21/11 14:22	20
1,1,2-Trichloro-1,2,2-trifluoroethane ND 20 6.4 ug/L 11/21/11 14:22 20 1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Methylcyclohexane	ND		20	5.2	ug/L			11/21/11 14:22	20
1,2-Dichlorobenzene ND 20 3.0 ug/L 11/21/11 14:22 20	Methyl tert-butyl ether	ND		20	3.7	ug/L			11/21/11 14:22	20
,	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20	6.4	ug/L			11/21/11 14:22	20
1,3-Dichlorobenzene ND 20 2.1 ug/L 11/21/11 14:22 20	1,2-Dichlorobenzene	ND		20	3.0	ug/L			11/21/11 14:22	20
	1,3-Dichlorobenzene	ND		20	2.1	ug/L			11/21/11 14:22	20

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	94		64 - 135		11/21/11 14:22	20
١	Toluene-d8 (Surr)	88		71 - 118		11/21/11 14:22	20
ı	4-Bromofluorobenzene (Surr)	96		70 - 118		11/21/11 14:22	20
١	Dibromofluoromethane (Surr)	92		70 - 128		11/21/11 14:22	20

20

20

20

4.1 ug/L

5.4 ug/L

5.7 ug/L

ND

ND

ND

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.1	0.19	0.014	ug/L		11/11/11 08:11	11/14/11 15:07	1
Acenaphthylene	4.5	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
Acetophenone	1.7	0.96	0.077	ug/L		11/11/11 08:11	11/14/11 15:07	1
Anthracene	0.29	0.19	0.15	ug/L		11/11/11 08:11	11/14/11 15:07	1
Atrazine	ND	0.96	0.086	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzaldehyde	ND *	0.96	0.14	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzo[a]anthracene	ND	0.19	0.014	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzo[b]fluoranthene	ND	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzo[k]fluoranthene	ND	0.19	0.053	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzo[g,h,i]perylene	ND	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
Benzo[a]pyrene	ND	0.19	0.013	ug/L		11/11/11 08:11	11/14/11 15:07	1
Bis(2-chloroethoxy)methane	ND	0.96	0.056	ug/L		11/11/11 08:11	11/14/11 15:07	1

11/21/11 14:22

11/21/11 14:22

11/21/11 14:22

20

20

20

Client: GAI Consultants

Naphthalene

Nitrobenzene

Pyrene

N-Nitrosodiphenylamine

N-Nitrosodi-n-propylamine

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4W-11-8-11

Date Collected: 11/08/11 14:00

Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	ND ND	0.19	0.024	ug/L		11/11/11 08:11	11/14/11 15:07	1
Bis(2-ethylhexyl) phthalate	ND	1.9	1.2	ug/L		11/11/11 08:11	11/14/11 15:07	1
Butyl benzyl phthalate	ND	0.96	0.14	ug/L		11/11/11 08:11	11/14/11 15:07	1
1,1'-Biphenyl	1.9	0.96	0.040	ug/L		11/11/11 08:11	11/14/11 15:07	1
Caprolactam	ND	4.8	1.1	ug/L		11/11/11 08:11	11/14/11 15:07	1
Carbazole	7.5	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
Chrysene	ND	0.19	0.013	ug/L		11/11/11 08:11	11/14/11 15:07	1
2-Chloronaphthalene	ND	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
2-Chlorophenol	ND	0.96	0.16	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,4-Dichlorophenol	ND	0.19	0.032	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,4-Dimethylphenol	9.6	0.96	0.082	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,4-Dinitrophenol	ND	4.8	0.59	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,4-Dinitrotoluene	ND	0.96	0.052	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,6-Dinitrotoluene	ND	0.96	0.077	ug/L		11/11/11 08:11	11/14/11 15:07	1
2-Methylnaphthalene	24	0.19	0.012	_		11/11/11 08:11	11/14/11 15:07	1
2-Methylphenol	4.9	0.96	0.083	ug/L		11/11/11 08:11	11/14/11 15:07	
2-Nitroaniline	ND	4.8	0.34	ug/L		11/11/11 08:11	11/14/11 15:07	
2-Nitrophenol	ND	0.96	0.16	ug/L		11/11/11 08:11	11/14/11 15:07	
2,2'-oxybis[1-chloropropane]	ND	0.19	0.019	ug/L		11/11/11 08:11	11/14/11 15:07	1
2,4,5-Trichlorophenol	ND	0.96	0.15	ug/L		11/11/11 08:11	11/14/11 15:07	
2,4,6-Trichlorophenol	ND	0.96	0.17	ug/L		11/11/11 08:11	11/14/11 15:07	
4-Nitroaniline	ND	4.8	0.17	ug/L		11/11/11 08:11	11/14/11 15:07	• • • • • • • • • • • • • • • • • • • •
4-Nitrophenol	ND	4.8	0.62	ug/L		11/11/11 08:11	11/14/11 15:07	1
4-Chlorophenyl phenyl ether	ND	0.96	0.048	ug/L		11/11/11 08:11	11/14/11 15:07	1
Methylphenol, 3 & 4	9.1	0.96	0.087	ug/L		11/11/11 08:11	11/14/11 15:07	1
4,6-Dinitro-2-methylphenol	ND	4.8	0.21	ug/L		11/11/11 08:11	11/14/11 15:07	1
4-Chloroaniline	ND	0.96	0.085	ug/L		11/11/11 08:11	11/14/11 15:07	1
4-Chloro-3-methylphenol	ND	0.96	0.073	ug/L		11/11/11 08:11	11/14/11 15:07	1
4-Bromophenyl phenyl ether	ND	0.96	0.061	ug/L		11/11/11 08:11	11/14/11 15:07	1
Dibenz(a,h)anthracene	ND	0.19	0.015	ug/L		11/11/11 08:11	11/14/11 15:07	1
Dibenzofuran	2.3	0.96	0.059	ug/L		11/11/11 08:11	11/14/11 15:07	1
Di-n-butyl phthalate	ND	0.96	0.12	ug/L		11/11/11 08:11	11/14/11 15:07	1
Diethyl phthalate	ND	0.96	0.14	ug/L		11/11/11 08:11	11/14/11 15:07	1
Dimethyl phthalate	ND	0.96	0.074	ug/L		11/11/11 08:11	11/14/11 15:07	1
Di-n-octyl phthalate	ND	0.96	0.20	ug/L		11/11/11 08:11	11/14/11 15:07	•
3,3'-Dichlorobenzidine	ND	0.96	0.11	ug/L		11/11/11 08:11	11/14/11 15:07	1
3-Nitroaniline	ND	4.8	0.31	ug/L		11/11/11 08:11	11/14/11 15:07	1
Fluoranthene	0.23	0.19	0.016	ug/L		11/11/11 08:11	11/14/11 15:07	1
Fluorene	1.0	0.19	0.021	ug/L		11/11/11 08:11	11/14/11 15:07	1
Hexachlorobenzene	ND	0.19	0.018	ug/L		11/11/11 08:11	11/14/11 15:07	1
Hexachlorobutadiene	ND	0.19	0.016	ug/L		11/11/11 08:11	11/14/11 15:07	1
Hexachlorocyclopentadiene	ND	0.96	0.050	ug/L		11/11/11 08:11	11/14/11 15:07	1
Hexachloroethane	ND	0.96	0.060	ug/L		11/11/11 08:11	11/14/11 15:07	1
Indeno[1,2,3-cd]pyrene	ND	0.19	0.019	ug/L		11/11/11 08:11	11/14/11 15:07	1
Isophorone	ND	0.96	0.062	ug/L		11/11/11 08:11	11/14/11 15:07	

11/14/11 15:07

11/14/11 15:07

11/14/11 15:07

11/14/11 15:07

11/14/11 15:07

11/11/11 08:11

11/11/11 08:11

11/11/11 08:11

11/11/11 08:11

11/11/11 08:11

0.19

1.9

0.96

0.19

0.19

0.013 ug/L

0.081 ug/L

0.082 ug/L

0.030 ug/L

0.015 ug/L

180 E

ND

ND

ND

0.16 J

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4W-11-8-11

Date Collected: 11/08/11 14:00 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	8.4		0.19	0.056	ug/L		11/11/11 08:11	11/14/11 15:07	1
Phenanthrene	3.5		0.19	0.041	ug/L		11/11/11 08:11	11/14/11 15:07	1
Pentachlorophenol	ND		0.96	0.064	ug/L		11/11/11 08:11	11/14/11 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	88		16 - 122				11/11/11 08:11	11/14/11 15:07	1
2-Fluorobiphenyl	67		19 - 107				11/11/11 08:11	11/14/11 15:07	1
2-Fluorophenol	71		10 - 111				11/11/11 08:11	11/14/11 15:07	1
Nitrobenzene-d5	82		23 - 112				11/11/11 08:11	11/14/11 15:07	1
Phenol-d5	72		15 - 112				11/11/11 08:11	11/14/11 15:07	1
Terphenyl-d14	53		10 - 132				11/11/11 08:11	11/14/11 15:07	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		7.7	0.55	ug/L		11/11/11 08:11	11/15/11 14:14	40
Acenaphthylene	3.7	J	7.7	0.58	ug/L		11/11/11 08:11	11/15/11 14:14	40
Acetophenone	ND		38	3.1	ug/L		11/11/11 08:11	11/15/11 14:14	40
Anthracene	ND		7.7	5.8	ug/L		11/11/11 08:11	11/15/11 14:14	40
Atrazine	ND		38	3.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzaldehyde	ND	*	38	5.8	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzo[a]anthracene	ND		7.7	0.57	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzo[b]fluoranthene	ND		7.7	0.60	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzo[k]fluoranthene	ND		7.7	2.1	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzo[g,h,i]perylene	ND		7.7	0.58	ug/L		11/11/11 08:11	11/15/11 14:14	40
Benzo[a]pyrene	ND		7.7	0.52	ug/L		11/11/11 08:11	11/15/11 14:14	40
Bis(2-chloroethoxy)methane	ND		38	2.2	ug/L		11/11/11 08:11	11/15/11 14:14	40
Bis(2-chloroethyl)ether	ND		7.7	0.97	ug/L		11/11/11 08:11	11/15/11 14:14	40
Bis(2-ethylhexyl) phthalate	ND		77		ug/L		11/11/11 08:11	11/15/11 14:14	40
Butyl benzyl phthalate	ND		38	5.5	ug/L		11/11/11 08:11	11/15/11 14:14	40
1,1'-Biphenyl	ND		38	1.6	ug/L		11/11/11 08:11	11/15/11 14:14	40
Caprolactam	ND		190	46	ug/L		11/11/11 08:11	11/15/11 14:14	40
Carbazole	6.8	J	7.7	0.61	ug/L		11/11/11 08:11	11/15/11 14:14	40
Chrysene	ND		7.7	0.54	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Chloronaphthalene	ND		7.7	0.58	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Chlorophenol	ND		38	6.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4-Dichlorophenol	ND		7.7	1.3	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4-Dimethylphenol	6.8	J	38	3.3	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4-Dinitrophenol	ND		190	24	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4-Dinitrotoluene	ND		38	2.1	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,6-Dinitrotoluene	ND		38	3.1	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Methylnaphthalene	19		7.7	0.47	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Methylphenol	9.2	J	38	3.3	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Nitroaniline	ND		190	14	ug/L		11/11/11 08:11	11/15/11 14:14	40
2-Nitrophenol	ND		38	6.6	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,2'-oxybis[1-chloropropane]	ND		7.7	0.76	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4,5-Trichlorophenol	ND		38	5.9	ug/L		11/11/11 08:11	11/15/11 14:14	40
2,4,6-Trichlorophenol	ND		38	6.7	ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Nitroaniline	ND		190		ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Nitrophenol	ND		190	25	ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Chlorophenyl phenyl ether	ND		38		ug/L		11/11/11 08:11	11/15/11 14:14	40
Methylphenol, 3 & 4	7.2	1	38		ug/L		11/11/11 08:11	11/15/11 14:14	40

Client: GAI Consultants

Terphenyl-d14

Project/Site: USS Clairton - C071418.13

-

Client Sample ID: B-4W-11-8-11

Date Collected: 11/08/11 14:00 Date Received: 11/08/11 16:09 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-5

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	ND		190	8.5	ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Chloroaniline	ND		38	3.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Chloro-3-methylphenol	ND		38	2.9	ug/L		11/11/11 08:11	11/15/11 14:14	40
4-Bromophenyl phenyl ether	ND		38	2.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
Dibenz(a,h)anthracene	ND		7.7	0.60	ug/L		11/11/11 08:11	11/15/11 14:14	40
Dibenzofuran	ND		38	2.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
Di-n-butyl phthalate	ND		38	4.8	ug/L		11/11/11 08:11	11/15/11 14:14	40
Diethyl phthalate	ND		38	5.6	ug/L		11/11/11 08:11	11/15/11 14:14	40
Dimethyl phthalate	ND		38	2.9	ug/L		11/11/11 08:11	11/15/11 14:14	40
Di-n-octyl phthalate	ND		38	7.9	ug/L		11/11/11 08:11	11/15/11 14:14	40
3,3'-Dichlorobenzidine	ND		38	4.3	ug/L		11/11/11 08:11	11/15/11 14:14	40
3-Nitroaniline	ND		190	12	ug/L		11/11/11 08:11	11/15/11 14:14	40
Fluoranthene	ND		7.7	0.62	ug/L		11/11/11 08:11	11/15/11 14:14	40
Fluorene	1.1	J	7.7	0.83	ug/L		11/11/11 08:11	11/15/11 14:14	40
Hexachlorobenzene	ND		7.7	0.70	ug/L		11/11/11 08:11	11/15/11 14:14	40
Hexachlorobutadiene	ND		7.7	0.64	ug/L		11/11/11 08:11	11/15/11 14:14	40
Hexachlorocyclopentadiene	ND		38	2.0	ug/L		11/11/11 08:11	11/15/11 14:14	40
Hexachloroethane	ND		38	2.4	ug/L		11/11/11 08:11	11/15/11 14:14	40
Indeno[1,2,3-cd]pyrene	ND		7.7	0.77	ug/L		11/11/11 08:11	11/15/11 14:14	40
Isophorone	ND		38	2.5	ug/L		11/11/11 08:11	11/15/11 14:14	40
Naphthalene	410		7.7	0.54	ug/L		11/11/11 08:11	11/15/11 14:14	40
Nitrobenzene	ND		77	3.2	ug/L		11/11/11 08:11	11/15/11 14:14	40
N-Nitrosodiphenylamine	ND		38	3.3	ug/L		11/11/11 08:11	11/15/11 14:14	40
N-Nitrosodi-n-propylamine	ND		7.7	1.2	ug/L		11/11/11 08:11	11/15/11 14:14	40
Pyrene	ND		7.7	0.60	ug/L		11/11/11 08:11	11/15/11 14:14	40
Phenol	7.1	J	7.7	2.2	ug/L		11/11/11 08:11	11/15/11 14:14	40
Phenanthrene	3.4	J	7.7	1.6	ug/L		11/11/11 08:11	11/15/11 14:14	40
Pentachlorophenol	ND		38	2.6	ug/L		11/11/11 08:11	11/15/11 14:14	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	58	D	16 - 122				11/11/11 08:11	11/15/11 14:14	40
2-Fluorobiphenyl	59	D	19 - 107				11/11/11 08:11	11/15/11 14:14	40
2-Fluorophenol	54	D	10 - 111				11/11/11 08:11	11/15/11 14:14	40
Nitrobenzene-d5	58	D	23 - 112				11/11/11 08:11	11/15/11 14:14	40
Phenol-d5	67	D	15 - 112				11/11/11 08:11	11/15/11 14:14	40

Method: 6010B - Lead									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	720		200	9.7	ug/L		11/09/11 16:47	11/10/11 17:50	1
Antimony	ND		10	1.3	ug/L		11/09/11 16:47	11/10/11 17:50	1
Arsenic	4.7	J	10	2.7	ug/L		11/09/11 16:47	11/10/11 17:50	1
Barium	100	J	200	0.62	ug/L		11/09/11 16:47	11/10/11 17:50	1
Boron	58	J	200	1.3	ug/L		11/09/11 16:47	11/10/11 17:50	1
Beryllium	ND		4.0	0.23	ug/L		11/09/11 16:47	11/10/11 17:50	1
Cadmium	ND		5.0	0.13	ug/L		11/09/11 16:47	11/10/11 17:50	1
Calcium	240000		5000	9.7	ug/L		11/09/11 16:47	11/10/11 17:50	1
Chromium	0.83	J	5.0	0.57	ug/L		11/09/11 16:47	11/10/11 17:50	1
Cobalt	ND		50	0.40	ug/L		11/09/11 16:47	11/10/11 17:50	1
Copper	ND		25	2.7	ug/L		11/09/11 16:47	11/10/11 17:50	1
Iron	180		100	12	ug/L		11/09/11 16:47	11/10/11 17:50	1

10 - 132

52 D

40

11/11/11 08:11 11/15/11 14:14

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-4W-11-8-11

Date Collected: 11/08/11 14:00 Date Received: 11/08/11 16:09

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5679-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		3.0	1.3	ug/L		11/09/11 16:47	11/10/11 17:50	1
Magnesium	ND		5000	21	ug/L		11/09/11 16:47	11/10/11 17:50	1
Manganese	ND		15	0.68	ug/L		11/09/11 16:47	11/10/11 17:50	1
Nickel	ND		40	1.6	ug/L		11/09/11 16:47	11/10/11 17:50	1
Potassium	34000		5000	750	ug/L		11/09/11 16:47	11/10/11 17:50	1
Selenium	7.4		5.0	3.0	ug/L		11/09/11 16:47	11/10/11 17:50	1
Silver	ND		5.0	0.68	ug/L		11/09/11 16:47	11/10/11 17:50	1
Sodium	170000		5000	220	ug/L		11/09/11 16:47	11/10/11 17:50	1
Thallium	2.4	J	10	2.4	ug/L		11/09/11 16:47	11/10/11 17:50	1
Vanadium	5.2	J	50	1.9	ug/L		11/09/11 16:47	11/10/11 17:50	1
Zinc	5.6	J B	20	2.5	ug/L		11/09/11 16:47	11/10/11 17:50	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.083	J	0.20	0.038	ug/L		11/21/11 07:20	11/22/11 14:55	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil and Grease)	1.9	J	4.8	1.4	mg/L		11/15/11 11:49	11/16/11 11:24	1
Ammonia, distilled	11	В	1.0	0.33	mg/L		11/09/11 16:00	11/10/11 14:56	10
Chemical Oxygen Demand	35		10	3.9	mg/L			11/09/11 16:59	1
Cyanide, Total	160		10	1.5	ug/L		11/11/11 12:00	11/14/11 09:16	1
рН	11.8	HF	0.100	0.100	SU			11/09/11 07:54	1
Total Suspended Solids	4.8		4.0	2.0	mg/L			11/09/11 14:15	1

Client Sample ID: B-2W-11-9-11 Lab Sample ID: 180-5712-1 Date Collected: 11/09/11 12:30 Matrix: Water

Date Received: 11/09/11 15:19

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	3.3 J	5.0	2.5 ug/L			11/22/11 12:11	1
Benzene	1.4	1.0	0.11 ug/L			11/22/11 12:11	1
Bromodichloromethane	ND	1.0	0.13 ug/L			11/22/11 12:11	1
Bromoform	ND	1.0	0.19 ug/L			11/22/11 12:11	1
Bromomethane	ND	1.0	0.31 ug/L			11/22/11 12:11	1
2-Butanone (MEK)	ND	5.0	0.55 ug/L			11/22/11 12:11	1
Carbon disulfide	ND	1.0	0.21 ug/L			11/22/11 12:11	1
Carbon tetrachloride	ND	1.0	0.14 ug/L			11/22/11 12:11	1
Chlorobenzene	ND	1.0	0.14 ug/L			11/22/11 12:11	1
Chloroethane	ND	1.0	0.21 ug/L			11/22/11 12:11	1
Chloroform	ND	1.0	0.17 ug/L			11/22/11 12:11	1
Dibromochloromethane	ND	1.0	0.14 ug/L			11/22/11 12:11	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.14 ug/L			11/22/11 12:11	1
1,2-Dibromoethane (EDB)	ND	1.0	0.18 ug/L			11/22/11 12:11	1
1,1-Dichloroethane	ND	1.0	0.12 ug/L			11/22/11 12:11	1
1,2-Dichloroethane	ND	1.0	0.21 ug/L			11/22/11 12:11	1
1,1-Dichloroethene	ND	1.0	0.30 ug/L			11/22/11 12:11	1
trans-1,2-Dichloroethene	ND	1.0	0.17 ug/L			11/22/11 12:11	1
1,2-Dichloropropane	ND	1.0	0.095 ug/L			11/22/11 12:11	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2W-11-9-11

D. C. W. A. A. A. C. C.

Date Collected: 11/09/11 12:30 Date Received: 11/09/11 15:19

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-1

Matrix: Wate	er

Method: 8260B - Volatile Organi Analyte	-	Qualifier	ontinuea) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		1.0	0.19	ug/L			11/22/11 12:11	1
trans-1,3-Dichloropropene	ND		1.0	0.15	ug/L			11/22/11 12:11	1
Ethylbenzene	0.42	J	1.0	0.23	ug/L			11/22/11 12:11	1
2-Hexanone	ND		5.0	0.16	ug/L			11/22/11 12:11	1
Methylene Chloride	ND		1.0	0.15	ug/L			11/22/11 12:11	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	0.53	ug/L			11/22/11 12:11	1
Styrene	0.57	J	1.0	0.097	ug/L			11/22/11 12:11	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/22/11 12:11	1
Tetrachloroethene	ND		1.0	0.15	ug/L			11/22/11 12:11	1
Toluene	1.1		1.0	0.15	ug/L			11/22/11 12:11	1
1,1,1-Trichloroethane	ND		1.0	0.29	ug/L			11/22/11 12:11	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/22/11 12:11	1
Trichloroethene	ND		1.0	0.14	ug/L			11/22/11 12:11	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/22/11 12:11	1
Vinyl chloride	ND		1.0	0.23	ug/L			11/22/11 12:11	1
Xylenes, Total	6.8		3.0	0.49	ug/L			11/22/11 12:11	1
Cyclohexane	ND		1.0	0.25	ug/L			11/22/11 12:11	1
cis-1,2-Dichloroethene	ND		1.0	0.24	ug/L			11/22/11 12:11	1
Dichlorodifluoromethane	ND		1.0	0.19	ug/L			11/22/11 12:11	1
Isopropylbenzene	ND		1.0	0.16	ug/L			11/22/11 12:11	1
Methyl acetate	ND		1.0	0.14	ug/L			11/22/11 12:11	1
Methylcyclohexane	ND		1.0	0.26	ug/L			11/22/11 12:11	1
Methyl tert-butyl ether	ND		1.0	0.18	ug/L			11/22/11 12:11	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.32	ug/L			11/22/11 12:11	1
1,2-Dichlorobenzene	ND		1.0	0.15	ug/L			11/22/11 12:11	1
1,3-Dichlorobenzene	ND		1.0	0.11	ug/L			11/22/11 12:11	1
1,4-Dichlorobenzene	ND		1.0	0.21	ug/L			11/22/11 12:11	1
1,2,4-Trichlorobenzene	ND		1.0	0.27	ug/L			11/22/11 12:11	1
Chloromethane	ND		1.0	0.28	ug/L			11/22/11 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		64 - 135			_		11/22/11 12:11	1
Toluene-d8 (Surr)	88		71 - 118					11/22/11 12:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.3		0.19	0.014	ug/L		11/14/11 08:40	11/17/11 18:55	1
Acenaphthylene	3.6		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	1
Acetophenone	0.20	J	0.96	0.077	ug/L		11/14/11 08:40	11/17/11 18:55	1
Anthracene	0.51		0.19	0.15	ug/L		11/14/11 08:40	11/17/11 18:55	1
Atrazine	ND		0.96	0.086	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzaldehyde	ND		0.96	0.14	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzo[a]anthracene	ND		0.19	0.014	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzo[b]fluoranthene	ND		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzo[k]fluoranthene	ND		0.19	0.053	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzo[g,h,i]perylene	ND		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	1
Benzo[a]pyrene	ND		0.19	0.013	ug/L		11/14/11 08:40	11/17/11 18:55	1
Bis(2-chloroethoxy)methane	ND		0.96	0.056	ug/L		11/14/11 08:40	11/17/11 18:55	1
Bis(2-chloroethyl)ether	ND		0.19	0.024	ug/L		11/14/11 08:40	11/17/11 18:55	1

70 - 118

70 - 128

94

11/22/11 12:11

11/22/11 12:11

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2W-11-9-11

Date Collected: 11/09/11 12:30 Date Received: 11/09/11 15:19 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-1

•	Matrix:	Water	

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND	1.9	1.2	ug/L		11/14/11 08:40	11/17/11 18:55	•
Butyl benzyl phthalate	ND	0.96	0.14	ug/L		11/14/11 08:40	11/17/11 18:55	
1,1'-Biphenyl	2.1	0.96	0.040	-		11/14/11 08:40	11/17/11 18:55	•
Caprolactam	ND	4.8	1.1	ug/L		11/14/11 08:40	11/17/11 18:55	•
Carbazole	0.39	0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	
Chrysene	ND	0.19	0.013	ug/L		11/14/11 08:40	11/17/11 18:55	•
2-Chloronaphthalene	ND	0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	•
2-Chlorophenol	ND	0.96	0.16	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4-Dichlorophenol	ND	0.19	0.032	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4-Dimethylphenol	ND	0.96	0.082	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4-Dinitrophenol	ND	4.8	0.59	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4-Dinitrotoluene	ND	0.96	0.052	ug/L		11/14/11 08:40	11/17/11 18:55	
2,6-Dinitrotoluene	ND	0.96	0.077	ug/L		11/14/11 08:40	11/17/11 18:55	•
2-Methylnaphthalene	9.5	0.19	0.012	ug/L		11/14/11 08:40	11/17/11 18:55	
2-Methylphenol	0.26 J	0.96	0.083	ug/L		11/14/11 08:40	11/17/11 18:55	
2-Nitroaniline	ND	4.8	0.34	ug/L		11/14/11 08:40	11/17/11 18:55	
2-Nitrophenol	ND	0.96	0.16	ug/L		11/14/11 08:40	11/17/11 18:55	
2,2'-oxybis[1-chloropropane]	ND	0.19	0.019	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4,5-Trichlorophenol	ND	0.96	0.15	ug/L		11/14/11 08:40	11/17/11 18:55	
2,4,6-Trichlorophenol	ND	0.96	0.17	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Nitroaniline	ND	4.8	0.17	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Nitrophenol	ND	4.8	0.62	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Chlorophenyl phenyl ether	ND	0.96	0.048	ug/L		11/14/11 08:40	11/17/11 18:55	
Methylphenol, 3 & 4	0.60 J	0.96	0.087	ug/L		11/14/11 08:40	11/17/11 18:55	
4,6-Dinitro-2-methylphenol	ND	4.8	0.21	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Chloroaniline	ND	0.96	0.085	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Chloro-3-methylphenol	ND	0.96	0.073	ug/L		11/14/11 08:40	11/17/11 18:55	
4-Bromophenyl phenyl ether	ND	0.96	0.061	ug/L		11/14/11 08:40	11/17/11 18:55	
Dibenz(a,h)anthracene	ND	0.19	0.015	ug/L		11/14/11 08:40	11/17/11 18:55	
Dibenzofuran	4.6	0.96	0.059	ug/L		11/14/11 08:40	11/17/11 18:55	
Di-n-butyl phthalate	ND	0.96	0.12	ug/L		11/14/11 08:40	11/17/11 18:55	
Diethyl phthalate	ND	0.96	0.14	ug/L		11/14/11 08:40	11/17/11 18:55	
Dimethyl phthalate	ND	0.96	0.074	ug/L		11/14/11 08:40	11/17/11 18:55	
Di-n-octyl phthalate	ND	0.96	0.20	ug/L		11/14/11 08:40	11/17/11 18:55	
3,3'-Dichlorobenzidine	ND	0.96	0.11	ug/L		11/14/11 08:40	11/17/11 18:55	
3-Nitroaniline	ND	4.8	0.31	ug/L		11/14/11 08:40	11/17/11 18:55	
Fluoranthene	0.71	0.19	0.016			11/14/11 08:40	11/17/11 18:55	
Fluorene	4.1	0.19	0.021			11/14/11 08:40	11/17/11 18:55	
Hexachlorobenzene	ND	0.19	0.018			11/14/11 08:40	11/17/11 18:55	· · · · · · .
Hexachlorobutadiene	ND	0.19	0.016	-		11/14/11 08:40	11/17/11 18:55	
Hexachlorocyclopentadiene	ND	0.96	0.050	_		11/14/11 08:40	11/17/11 18:55	
Hexachloroethane	ND	0.96	0.060			11/14/11 08:40	11/17/11 18:55	· · · · · · · .
Indeno[1,2,3-cd]pyrene	ND	0.19	0.019	-		11/14/11 08:40	11/17/11 18:55	
Isophorone	ND	0.96	0.062	_		11/14/11 08:40	11/17/11 18:55	
Naphthalene	43 E	0.19	0.013			11/14/11 08:40	11/17/11 18:55	
Nitrobenzene	ND	1.9	0.081	-		11/14/11 08:40	11/17/11 18:55	
N-Nitrosodiphenylamine	ND	0.96	0.082	•		11/14/11 08:40	11/17/11 18:55	
N-Nitrosodi-n-propylamine	ND	0.19	0.030			11/14/11 08:40	11/17/11 18:55	
Pyrene	0.58	0.19	0.015	_		11/14/11 08:40	11/17/11 18:55	
Phenol	1.3	0.19	0.013	-		11/14/11 08:40	11/17/11 18:55	,

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2W-11-9-11

Date Collected: 11/09/11 12:30 Date Received: 11/09/11 15:19

TestAmerica Job ID: 180-5622-1 Lab Sample ID: 180-5712-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	6.1		0.19	0.041	ug/L		11/14/11 08:40	11/17/11 18:55	1
Pentachlorophenol	ND		0.96	0.064	ug/L		11/14/11 08:40	11/17/11 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	69		16 - 122				11/14/11 08:40	11/17/11 18:55	1
2-Fluorobiphenyl	52		19 - 107				11/14/11 08:40	11/17/11 18:55	1
2-Fluorophenol	47		10 - 111				11/14/11 08:40	11/17/11 18:55	1
Nitrobenzene-d5	47		23 - 112				11/14/11 08:40	11/17/11 18:55	1
Phenol-d5	51		15 - 112				11/14/11 08:40	11/17/11 18:55	1
Terphenyl-d14	47		10 - 132				11/14/11 08:40	11/17/11 18:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.4		0.77	0.055	ug/L		11/14/11 08:40	11/18/11 23:19	4
Acenaphthylene	3.5		0.77	0.058	ug/L		11/14/11 08:40	11/18/11 23:19	4
Acetophenone	ND		3.8	0.31	ug/L		11/14/11 08:40	11/18/11 23:19	4
Anthracene	ND		0.77	0.58	ug/L		11/14/11 08:40	11/18/11 23:19	4
Atrazine	ND		3.8	0.34	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzaldehyde	ND		3.8	0.58	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzo[a]anthracene	ND		0.77	0.057	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzo[b]fluoranthene	ND		0.77	0.060	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzo[k]fluoranthene	ND		0.77	0.21	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzo[g,h,i]perylene	ND		0.77	0.058	ug/L		11/14/11 08:40	11/18/11 23:19	4
Benzo[a]pyrene	ND		0.77	0.052	ug/L		11/14/11 08:40	11/18/11 23:19	4
Bis(2-chloroethoxy)methane	ND		3.8	0.22	ug/L		11/14/11 08:40	11/18/11 23:19	4
Bis(2-chloroethyl)ether	ND		0.77	0.097	ug/L		11/14/11 08:40	11/18/11 23:19	4
Bis(2-ethylhexyl) phthalate	ND		7.7	4.8	ug/L		11/14/11 08:40	11/18/11 23:19	4
Butyl benzyl phthalate	ND		3.8	0.55	ug/L		11/14/11 08:40	11/18/11 23:19	4
1,1'-Biphenyl	2.1	J	3.8	0.16	ug/L		11/14/11 08:40	11/18/11 23:19	4
Caprolactam	ND		19	4.6	ug/L		11/14/11 08:40	11/18/11 23:19	4
Carbazole	0.46	J	0.77	0.061	ug/L		11/14/11 08:40	11/18/11 23:19	4
Chrysene	ND		0.77	0.054	ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Chloronaphthalene	ND		0.77	0.058	ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Chlorophenol	ND		3.8	0.64	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4-Dichlorophenol	ND		0.77	0.13	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4-Dimethylphenol	ND		3.8	0.33	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4-Dinitrophenol	ND		19	2.4	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4-Dinitrotoluene	ND		3.8	0.21	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,6-Dinitrotoluene	ND		3.8	0.31	ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Methylnaphthalene	9.5		0.77	0.047	ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Methylphenol	ND		3.8	0.33	ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Nitroaniline	ND		19		ug/L		11/14/11 08:40	11/18/11 23:19	4
2-Nitrophenol	ND		3.8	0.66	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,2'-oxybis[1-chloropropane]	ND		0.77	0.076	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4,5-Trichlorophenol	ND		3.8	0.59	ug/L		11/14/11 08:40	11/18/11 23:19	4
2,4,6-Trichlorophenol	ND		3.8	0.67	ug/L		11/14/11 08:40	11/18/11 23:19	4
4-Nitroaniline	ND		19	0.66	- -		11/14/11 08:40	11/18/11 23:19	4
4-Nitrophenol	ND		19	2.5	ug/L		11/14/11 08:40	11/18/11 23:19	4
4-Chlorophenyl phenyl ether	ND		3.8	0.19	-		11/14/11 08:40	11/18/11 23:19	4
Methylphenol, 3 & 4	0.41	J	3.8	0.35			11/14/11 08:40	11/18/11 23:19	4
4,6-Dinitro-2-methylphenol	ND		19	0.85	•		11/14/11 08:40	11/18/11 23:19	4

TestAmerica Pittsburgh 12/14/2011

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels - DL (Continued)

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2W-11-9-11

Date Collected: 11/09/11 12:30 Date Received: 11/09/11 15:19

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-1

repared	Analyzed	Dil Fac	
14/11 08:40	11/18/11 23:19	4	
14/11 08:40	11/18/11 23:19	4	
14/11 08:40	11/18/11 23:19	4	
14/11 08:40	11/18/11 23:19	4	
14/11 08:40	11/18/11 23:19	4	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	ND		3.8	0.34	ug/L		11/14/11 08:40	11/18/11 23:19	4
4-Chloro-3-methylphenol	ND		3.8	0.29	ug/L		11/14/11 08:40	11/18/11 23:19	4
4-Bromophenyl phenyl ether	ND		3.8	0.24	ug/L		11/14/11 08:40	11/18/11 23:19	4
Dibenz(a,h)anthracene	ND		0.77	0.060	ug/L		11/14/11 08:40	11/18/11 23:19	4
Dibenzofuran	4.7		3.8	0.24	ug/L		11/14/11 08:40	11/18/11 23:19	4
Di-n-butyl phthalate	ND		3.8	0.48	ug/L		11/14/11 08:40	11/18/11 23:19	4
Diethyl phthalate	ND		3.8	0.56	ug/L		11/14/11 08:40	11/18/11 23:19	4
Dimethyl phthalate	ND		3.8	0.29	ug/L		11/14/11 08:40	11/18/11 23:19	4
Di-n-octyl phthalate	ND		3.8	0.79	ug/L		11/14/11 08:40	11/18/11 23:19	4
3,3'-Dichlorobenzidine	ND		3.8	0.43	ug/L		11/14/11 08:40	11/18/11 23:19	4
3-Nitroaniline	ND		19	1.2	ug/L		11/14/11 08:40	11/18/11 23:19	4
Fluoranthene	0.87		0.77	0.062	ug/L		11/14/11 08:40	11/18/11 23:19	4
Fluorene	4.0		0.77	0.083	ug/L		11/14/11 08:40	11/18/11 23:19	4
Hexachlorobenzene	ND		0.77	0.070	ug/L		11/14/11 08:40	11/18/11 23:19	4
Hexachlorobutadiene	ND		0.77	0.064	ug/L		11/14/11 08:40	11/18/11 23:19	4
Hexachlorocyclopentadiene	ND		3.8	0.20	ug/L		11/14/11 08:40	11/18/11 23:19	4
Hexachloroethane	ND		3.8	0.24	ug/L		11/14/11 08:40	11/18/11 23:19	4
Indeno[1,2,3-cd]pyrene	ND		0.77	0.077	ug/L		11/14/11 08:40	11/18/11 23:19	4
Isophorone	ND		3.8	0.25	ug/L		11/14/11 08:40	11/18/11 23:19	4
Naphthalene	58		0.77	0.054	ug/L		11/14/11 08:40	11/18/11 23:19	4
Nitrobenzene	ND		7.7	0.32	ug/L		11/14/11 08:40	11/18/11 23:19	4
N-Nitrosodiphenylamine	ND		3.8	0.33	ug/L		11/14/11 08:40	11/18/11 23:19	4
N-Nitrosodi-n-propylamine	ND		0.77	0.12	ug/L		11/14/11 08:40	11/18/11 23:19	4
Pyrene	0.61	J	0.77	0.060	ug/L		11/14/11 08:40	11/18/11 23:19	4
Phenol	1.3		0.77	0.22	ug/L		11/14/11 08:40	11/18/11 23:19	4
Phenanthrene	6.0		0.77	0.16	ug/L		11/14/11 08:40	11/18/11 23:19	4
Pentachlorophenol	ND		3.8	0.26	ug/L		11/14/11 08:40	11/18/11 23:19	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	71		16 - 122				11/14/11 08:40	11/18/11 23:19	4
2-Fluorobiphenyl	51		19 - 107				11/14/11 08:40	11/18/11 23:19	4

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	71	16 - 122	11/14/11 08:40	11/18/11 23:19	4
2-Fluorobiphenyl	51	19 - 107	11/14/11 08:40	11/18/11 23:19	4
2-Fluorophenol	45	10 - 111	11/14/11 08:40	11/18/11 23:19	4
Nitrobenzene-d5	45	23 - 112	11/14/11 08:40	11/18/11 23:19	4
Phenol-d5	49	15 - 112	11/14/11 08:40	11/18/11 23:19	4
Terphenyl-d14	49	10 - 132	11/14/11 08:40	11/18/11 23:19	4

Method	l: (3010	B - I	Lead
--------	------	------	--------------	------

Method: 6010B - Lead									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	140	J	200	9.7	ug/L		11/11/11 09:31	11/14/11 14:38	1
Antimony	2.3	J	10	1.3	ug/L		11/11/11 09:31	11/14/11 14:38	1
Arsenic	ND		10	2.7	ug/L		11/11/11 09:31	11/14/11 14:38	1
Barium	51	J	200	0.62	ug/L		11/11/11 09:31	11/14/11 14:38	1
Boron	290		200	1.3	ug/L		11/11/11 09:31	11/14/11 14:38	1
Beryllium	0.41	J	4.0	0.23	ug/L		11/11/11 09:31	11/14/11 14:38	1
Cadmium	ND		5.0	0.13	ug/L		11/11/11 09:31	11/14/11 14:38	1
Calcium	95000		5000	9.7	ug/L		11/11/11 09:31	11/14/11 14:38	1
Chromium	ND		5.0	0.57	ug/L		11/11/11 09:31	11/14/11 14:38	1
Cobalt	ND		50	0.40	ug/L		11/11/11 09:31	11/14/11 14:38	1
Copper	ND		25	2.7	ug/L		11/11/11 09:31	11/14/11 14:38	1
Iron	41	J	100	12	ug/L		11/11/11 09:31	11/14/11 14:38	1
Lead	ND		3.0	1.3	ug/L		11/11/11 09:31	11/14/11 14:38	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-2W-11-9-11

Date Collected: 11/09/11 12:30 Date Received: 11/09/11 15:19 Lab Sample ID: 180-5712-1

TestAmerica Job ID: 180-5622-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	650	J	5000	21	ug/L		11/11/11 09:31	11/14/11 14:38	1
Manganese	4.0	J	15	0.68	ug/L		11/11/11 09:31	11/14/11 14:38	1
Nickel	ND		40	1.6	ug/L		11/11/11 09:31	11/14/11 14:38	1
Potassium	8000		5000	750	ug/L		11/11/11 09:31	11/14/11 14:38	1
Selenium	27		5.0	3.0	ug/L		11/11/11 09:31	11/14/11 14:38	1
Silver	ND		5.0	0.68	ug/L		11/11/11 09:31	11/14/11 14:38	1
Sodium	94000		5000	220	ug/L		11/11/11 09:31	11/14/11 14:38	1
Thallium	ND		10	2.4	ug/L		11/11/11 09:31	11/14/11 14:38	1
Vanadium	2.0	J	50	1.9	ug/L		11/11/11 09:31	11/14/11 14:38	1
Zinc	4.4	JB	20	2.5	ug/L		11/11/11 09:31	11/14/11 14:38	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.038	ug/L		11/29/11 13:52	11/29/11 18:41	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil and Grease)	2.5	J	4.8	1.4	mg/L		11/17/11 17:19	11/18/11 16:27	1
Ammonia, distilled	1.0		0.10	0.033	mg/L		11/15/11 10:00	11/15/11 14:55	1
Chemical Oxygen Demand	13		10	3.9	mg/L			11/11/11 05:53	1
Cyanide, Total	15		10	1.5	ug/L		11/11/11 12:00	11/14/11 09:16	1
pH	10.8	HF	0.100	0.100	SU			11/10/11 12:39	1
Total Suspended Solids	ND		4.0	2.0	mg/L			11/10/11 12:16	1

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00

Date Received: 11/09/11 15:19

Lab Sample	e ID: 1	80-5712-2
------------	---------	-----------

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND	10	5.0	ug/L			11/22/11 12:35	2
Benzene	39	2.0	0.21	ug/L			11/22/11 12:35	2
Bromodichloromethane	ND	2.0	0.26	ug/L			11/22/11 12:35	2
Bromoform	ND	2.0	0.38	ug/L			11/22/11 12:35	2
Bromomethane	ND	2.0	0.63	ug/L			11/22/11 12:35	2
2-Butanone (MEK)	ND	10	1.1	ug/L			11/22/11 12:35	2
Carbon disulfide	ND	2.0	0.42	ug/L			11/22/11 12:35	2
Carbon tetrachloride	ND	2.0	0.27	ug/L			11/22/11 12:35	2
Chlorobenzene	ND	2.0	0.27	ug/L			11/22/11 12:35	2
Chloroethane	ND	2.0	0.43	ug/L			11/22/11 12:35	2
Chloroform	ND	2.0	0.34	ug/L			11/22/11 12:35	2
Dibromochloromethane	ND	2.0	0.27	ug/L			11/22/11 12:35	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.28	ug/L			11/22/11 12:35	2
1,2-Dibromoethane (EDB)	ND	2.0	0.36	ug/L			11/22/11 12:35	2
1,1-Dichloroethane	ND	2.0	0.23	ug/L			11/22/11 12:35	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L			11/22/11 12:35	2
1,1-Dichloroethene	ND	2.0	0.59	ug/L			11/22/11 12:35	2
trans-1,2-Dichloroethene	ND	2.0	0.34	ug/L			11/22/11 12:35	2
1,2-Dichloropropane	ND	2.0	0.19	ug/L			11/22/11 12:35	2
cis-1,3-Dichloropropene	ND	2.0	0.37	ug/L			11/22/11 12:35	2

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00 Date Received: 11/09/11 15:19

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-2

			Į
epared	Analyzed	Dil Fac	
	11/22/11 12:35	2	
	11/22/11 12:35	2	
	11/22/11 12:35	2	
	11/22/11 12:35	2	
	11/22/11 12:35	2	9
	11/22/11 12:35	2	•
	11/22/11 12:35	2	
	11/22/11 12:35	2	
	44/00/44 40 05	•	

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		2.0	0.30	ug/L			11/22/11 12:35	2
Ethylbenzene	2.5		2.0	0.45	ug/L			11/22/11 12:35	2
2-Hexanone	ND		10	0.32	ug/L			11/22/11 12:35	2
Methylene Chloride	ND		2.0	0.30	ug/L			11/22/11 12:35	2
4-Methyl-2-pentanone (MIBK)	ND		10	1.1	ug/L			11/22/11 12:35	2
Styrene	ND		2.0	0.19	ug/L			11/22/11 12:35	2
1,1,2,2-Tetrachloroethane	ND		2.0	0.40	ug/L			11/22/11 12:35	2
Tetrachloroethene	ND		2.0	0.30	ug/L			11/22/11 12:35	2
Toluene	11		2.0	0.30	ug/L			11/22/11 12:35	2
1,1,1-Trichloroethane	ND		2.0	0.57	ug/L			11/22/11 12:35	2
1,1,2-Trichloroethane	ND		2.0	0.40	ug/L			11/22/11 12:35	2
Trichloroethene	ND		2.0	0.29	ug/L			11/22/11 12:35	2
Trichlorofluoromethane	ND		2.0	0.40	ug/L			11/22/11 12:35	2
Vinyl chloride	ND		2.0	0.45	ug/L			11/22/11 12:35	2
Xylenes, Total	18		6.0	0.98	ug/L			11/22/11 12:35	2
Cyclohexane	ND		2.0	0.51	ug/L			11/22/11 12:35	2
cis-1,2-Dichloroethene	ND		2.0	0.47	ug/L			11/22/11 12:35	2
Dichlorodifluoromethane	ND		2.0	0.39	ug/L			11/22/11 12:35	2
Isopropylbenzene	ND		2.0	0.33	ug/L			11/22/11 12:35	2
Methyl acetate	ND		2.0	0.28	ug/L			11/22/11 12:35	2
Methylcyclohexane	ND		2.0	0.52	ug/L			11/22/11 12:35	2
Methyl tert-butyl ether	ND		2.0	0.37	ug/L			11/22/11 12:35	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.64	ug/L			11/22/11 12:35	2
1,2-Dichlorobenzene	ND		2.0	0.30	ug/L			11/22/11 12:35	2
1,3-Dichlorobenzene	ND		2.0	0.21	ug/L			11/22/11 12:35	2
1,4-Dichlorobenzene	ND		2.0	0.41	ug/L			11/22/11 12:35	2
1,2,4-Trichlorobenzene	ND		2.0	0.54	ug/L			11/22/11 12:35	2
Chloromethane	ND		2.0	0.57	ug/L			11/22/11 12:35	2
Surrogate	%Recovery C	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		64 - 135			-		11/22/11 12:35	2
Toluene-d8 (Surr)	91		71 - 118					11/22/11 12:35	2
4-Bromofluorobenzene (Surr)	98		70 - 118					11/22/11 12:35	2
Dibromofluoromethane (Surr)	93		70 - 128					11/22/11 12:35	2

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	3.0		0.19	0.014	ug/L		11/14/11 08:40	11/17/11 19:18	1
Acenaphthylene	4.2		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 19:18	1
Acetophenone	0.65	J	0.97	0.078	ug/L		11/14/11 08:40	11/17/11 19:18	1
Anthracene	0.33		0.19	0.15	ug/L		11/14/11 08:40	11/17/11 19:18	1
Atrazine	ND		0.97	0.087	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzaldehyde	ND		0.97	0.15	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzo[a]anthracene	ND		0.19	0.014	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzo[b]fluoranthene	ND		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzo[k]fluoranthene	ND		0.19	0.053	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzo[g,h,i]perylene	ND		0.19	0.015	ug/L		11/14/11 08:40	11/17/11 19:18	1
Benzo[a]pyrene	ND		0.19	0.013	ug/L		11/14/11 08:40	11/17/11 19:18	1
Bis(2-chloroethoxy)methane	ND		0.97	0.056	ug/L		11/14/11 08:40	11/17/11 19:18	1
Bis(2-chloroethyl)ether	ND		0.19	0.024	ug/L		11/14/11 08:40	11/17/11 19:18	1
Bis(2-ethylhexyl) phthalate	ND		1.9	1.2	ug/L		11/14/11 08:40	11/17/11 19:18	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00 Date Received: 11/09/11 15:19

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-2

pared	Analyzed	Dil Fac	
11 08:40	11/17/11 19:18	1	
11 08:40	11/17/11 19:18	1	

Analyte	Result Qualifier	RL	vels (Continu MDL Unit		Prepared	Analyzed	Dil Fac
Butyl benzyl phthalate	ND ND	0.97	0.14 ug/L		11/14/11 08:40	11/17/11 19:18	1
1,1'-Biphenyl	1.6	0.97	0.040 ug/L		11/14/11 08:40	11/17/11 19:18	1
Caprolactam	ND	4.9	1.2 ug/L		11/14/11 08:40	11/17/11 19:18	1
Carbazole	0.83	0.19	0.015 ug/L		11/14/11 08:40	11/17/11 19:18	1
Chrysene	ND	0.19	0.013 ug/L		11/14/11 08:40	11/17/11 19:18	
•			_				
2-Chlorophthalene	ND	0.19	0.015 ug/L		11/14/11 08:40	11/17/11 19:18	1
2-Chlorophenol	ND	0.97	0.16 ug/L		11/14/11 08:40	11/17/11 19:18	
2,4-Dichlorophenol	ND	0.19	0.032 ug/L		11/14/11 08:40	11/17/11 19:18	1
2,4-Dimethylphenol	ND	0.97	0.083 ug/L		11/14/11 08:40	11/17/11 19:18	1
2,4-Dinitrophenol	ND	4.9	0.60 ug/L		11/14/11 08:40	11/17/11 19:18	1
2,4-Dinitrotoluene	ND	0.97	0.052 ug/L		11/14/11 08:40	11/17/11 19:18	1
2,6-Dinitrotoluene	ND	0.97	0.077 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2-Methylnaphthalene	5.3	0.19	0.012 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2-Methylphenol	0.22 J	0.97	0.084 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2-Nitroaniline	ND	4.9	0.34 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2-Nitrophenol	ND	0.97	0.17 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2,2'-oxybis[1-chloropropane]	ND	0.19	0.019 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2,4,5-Trichlorophenol	ND	0.97	0.15 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
2,4,6-Trichlorophenol	ND	0.97	0.17 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
4-Nitroaniline	ND	4.9	0.17 ug/L		11/14/11 08:40	11/17/11 19:18	1
4-Nitrophenol	ND	4.9	0.63 ug/L		11/14/11 08:40	11/17/11 19:18	1
4-Chlorophenyl phenyl ether	ND	0.97	0.049 ug/L		11/14/11 08:40	11/17/11 19:18	. 1
Methylphenol, 3 & 4	0.41 J	0.97	0.048 ug/L		11/14/11 08:40	11/17/11 19:18	
	0.41 J ND	4.9	_			11/17/11 19:18	1
4,6-Dinitro-2-methylphenol	ND ND	0.97	ŭ		11/14/11 08:40		1
4-Chloroaniline			0.086 ug/L		11/14/11 08:40	11/17/11 19:18	
4-Chloro-3-methylphenol	ND	0.97	0.073 ug/L		11/14/11 08:40	11/17/11 19:18	1
4-Bromophenyl phenyl ether	ND	0.97	0.062 ug/L		11/14/11 08:40	11/17/11 19:18	1
Dibenz(a,h)anthracene	ND	0.19	0.015 ug/L		11/14/11 08:40	11/17/11 19:18	1
Dibenzofuran	4.4	0.97	0.060 ug/L		11/14/11 08:40	11/17/11 19:18	1
Di-n-butyl phthalate	ND	0.97	0.12 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Diethyl phthalate	ND	0.97	0.14 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Dimethyl phthalate	ND	0.97	0.074 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Di-n-octyl phthalate	ND	0.97	0.20 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
3,3'-Dichlorobenzidine	ND	0.97	0.11 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
3-Nitroaniline	ND	4.9	0.31 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Fluoranthene	0.64	0.19	0.016 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Fluorene	3.3	0.19	0.021 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Hexachlorobenzene	ND	0.19	0.018 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Hexachlorobutadiene	ND	0.19	0.016 ug/L		11/14/11 08:40	11/17/11 19:18	1
Hexachlorocyclopentadiene	ND	0.97	0.050 ug/L		11/14/11 08:40	11/17/11 19:18	1
Hexachloroethane	ND	0.97	0.061 ug/L		11/14/11 08:40	11/17/11 19:18	1
Indeno[1,2,3-cd]pyrene	ND	0.19	0.001 ug/L		11/14/11 08:40	11/17/11 19:18	1
	ND	0.13	0.019 ug/L				1
Isophorone			.		11/14/11 08:40	11/17/11 19:18	
Naphthalene	53 E	0.19	0.014 ug/L		11/14/11 08:40	11/17/11 19:18	1
Nitrobenzene	ND	1.9	0.082 ug/L		11/14/11 08:40	11/17/11 19:18	1
N-Nitrosodiphenylamine	ND	0.97	0.083 ug/L		11/14/11 08:40	11/17/11 19:18	1
N-Nitrosodi-n-propylamine	ND	0.19	0.030 ug/L		11/14/11 08:40	11/17/11 19:18	1
Pyrene	0.56	0.19	0.015 ug/L		11/14/11 08:40	11/17/11 19:18	1
Phenol	0.47	0.19	0.056 ug/L	L	11/14/11 08:40	11/17/11 19:18	1
Phenanthrene	3.4	0.19	0.041 ug/L	L	11/14/11 08:40	11/17/11 19:18	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00 Date Received: 11/09/11 15:19

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND ND		0.97	0.064	ug/L		11/14/11 08:40	11/17/11 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		16 - 122				11/14/11 08:40	11/17/11 19:18	1
2-Fluorobiphenyl	47		19 - 107				11/14/11 08:40	11/17/11 19:18	1
2-Fluorophenol	40		10 - 111				11/14/11 08:40	11/17/11 19:18	1
Nitrobenzene-d5	44		23 - 112				11/14/11 08:40	11/17/11 19:18	1
Phenol-d5	42		15 - 112				11/14/11 08:40	11/17/11 19:18	1
Terphenyl-d14	38		10 - 132				11/14/11 08:40	11/17/11 19:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	3.4		0.97	0.070	ug/L		11/14/11 08:40	11/18/11 23:43	5
Acenaphthylene	4.3		0.97	0.074	ug/L		11/14/11 08:40	11/18/11 23:43	5
Acetophenone	ND		4.9	0.39	ug/L		11/14/11 08:40	11/18/11 23:43	5
Anthracene	ND		0.97	0.73	ug/L		11/14/11 08:40	11/18/11 23:43	5
Atrazine	ND		4.9	0.43	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzaldehyde	ND		4.9	0.73	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzo[a]anthracene	ND		0.97	0.071	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzo[b]fluoranthene	ND		0.97	0.076	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzo[k]fluoranthene	ND		0.97	0.27	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzo[g,h,i]perylene	ND		0.97	0.073	ug/L		11/14/11 08:40	11/18/11 23:43	5
Benzo[a]pyrene	ND		0.97	0.065	ug/L		11/14/11 08:40	11/18/11 23:43	5
Bis(2-chloroethoxy)methane	ND		4.9	0.28	ug/L		11/14/11 08:40	11/18/11 23:43	5
Bis(2-chloroethyl)ether	ND		0.97	0.12	ug/L		11/14/11 08:40	11/18/11 23:43	5
Bis(2-ethylhexyl) phthalate	ND		9.7	6.1	ug/L		11/14/11 08:40	11/18/11 23:43	5
Butyl benzyl phthalate	ND		4.9	0.69	ug/L		11/14/11 08:40	11/18/11 23:43	5
1,1'-Biphenyl	1.8	J	4.9	0.20	ug/L		11/14/11 08:40	11/18/11 23:43	5
Caprolactam	ND		24	5.8	ug/L		11/14/11 08:40	11/18/11 23:43	5
Carbazole	0.91	J	0.97	0.077	ug/L		11/14/11 08:40	11/18/11 23:43	5
Chrysene	ND		0.97	0.068	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Chloronaphthalene	ND		0.97	0.073	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Chlorophenol	ND		4.9	0.80	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4-Dichlorophenol	ND		0.97	0.16	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4-Dimethylphenol	ND		4.9	0.41	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4-Dinitrophenol	ND		24	3.0	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4-Dinitrotoluene	ND		4.9	0.26	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,6-Dinitrotoluene	ND		4.9	0.39	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Methylnaphthalene	5.2		0.97	0.059	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Methylphenol	ND		4.9	0.42	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Nitroaniline	ND		24	1.7	ug/L		11/14/11 08:40	11/18/11 23:43	5
2-Nitrophenol	ND		4.9	0.83	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,2'-oxybis[1-chloropropane]	ND		0.97	0.096	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4,5-Trichlorophenol	ND		4.9	0.74	ug/L		11/14/11 08:40	11/18/11 23:43	5
2,4,6-Trichlorophenol	ND		4.9	0.85	ug/L		11/14/11 08:40	11/18/11 23:43	5
4-Nitroaniline	ND		24	0.84	ug/L		11/14/11 08:40	11/18/11 23:43	5
4-Nitrophenol	ND		24	3.1	ug/L		11/14/11 08:40	11/18/11 23:43	5
4-Chlorophenyl phenyl ether	ND		4.9	0.24	ug/L		11/14/11 08:40	11/18/11 23:43	5
Methylphenol, 3 & 4	ND		4.9	0.44	ug/L		11/14/11 08:40	11/18/11 23:43	5
4,6-Dinitro-2-methylphenol	ND		24	1.1	ug/L		11/14/11 08:40	11/18/11 23:43	5
4-Chloroaniline	ND		4.9	0.43	ug/L		11/14/11 08:40	11/18/11 23:43	5

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00 Date Received: 11/09/11 15:19 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5712-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloro-3-methylphenol	ND		4.9	0.37	ug/L		11/14/11 08:40	11/18/11 23:43	5
4-Bromophenyl phenyl ether	ND		4.9	0.31	ug/L		11/14/11 08:40	11/18/11 23:43	5
Dibenz(a,h)anthracene	ND		0.97	0.075	ug/L		11/14/11 08:40	11/18/11 23:43	5
Dibenzofuran	4.7	J	4.9	0.30	ug/L		11/14/11 08:40	11/18/11 23:43	5
Di-n-butyl phthalate	ND		4.9	0.61	ug/L		11/14/11 08:40	11/18/11 23:43	5
Diethyl phthalate	ND		4.9	0.71	ug/L		11/14/11 08:40	11/18/11 23:43	5
Dimethyl phthalate	ND		4.9	0.37	ug/L		11/14/11 08:40	11/18/11 23:43	5
Di-n-octyl phthalate	ND		4.9	1.0	ug/L		11/14/11 08:40	11/18/11 23:43	5
3,3'-Dichlorobenzidine	ND		4.9	0.54	ug/L		11/14/11 08:40	11/18/11 23:43	5
3-Nitroaniline	ND		24	1.6	ug/L		11/14/11 08:40	11/18/11 23:43	5
Fluoranthene	0.79	J	0.97	0.079	ug/L		11/14/11 08:40	11/18/11 23:43	5
Fluorene	3.5		0.97	0.10	ug/L		11/14/11 08:40	11/18/11 23:43	5
Hexachlorobenzene	ND		0.97	0.089	ug/L		11/14/11 08:40	11/18/11 23:43	5
Hexachlorobutadiene	ND		0.97	0.081	ug/L		11/14/11 08:40	11/18/11 23:43	5
Hexachlorocyclopentadiene	ND		4.9	0.25	ug/L		11/14/11 08:40	11/18/11 23:43	5
Hexachloroethane	ND		4.9	0.30	ug/L		11/14/11 08:40	11/18/11 23:43	5
Indeno[1,2,3-cd]pyrene	ND		0.97	0.097	ug/L		11/14/11 08:40	11/18/11 23:43	5
Isophorone	ND		4.9	0.31	ug/L		11/14/11 08:40	11/18/11 23:43	5
Naphthalene	100		0.97	0.068	ug/L		11/14/11 08:40	11/18/11 23:43	5
Nitrobenzene	ND		9.7	0.41	ug/L		11/14/11 08:40	11/18/11 23:43	5
N-Nitrosodiphenylamine	ND		4.9	0.41	ug/L		11/14/11 08:40	11/18/11 23:43	5
N-Nitrosodi-n-propylamine	ND		0.97	0.15	ug/L		11/14/11 08:40	11/18/11 23:43	5
Pyrene	0.61	J	0.97	0.076	ug/L		11/14/11 08:40	11/18/11 23:43	5
Phenol	0.48	J	0.97	0.28	ug/L		11/14/11 08:40	11/18/11 23:43	5
Phenanthrene	3.8		0.97	0.21	ug/L		11/14/11 08:40	11/18/11 23:43	5

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	64	16 - 122	11/14/11 08:40	11/18/11 23:43	5
2-Fluorobiphenyl	49	19 - 107	11/14/11 08:40	11/18/11 23:43	5
2-Fluorophenol	41	10 - 111	11/14/11 08:40	11/18/11 23:43	5
Nitrobenzene-d5	44	23 - 112	11/14/11 08:40	11/18/11 23:43	5
Phenol-d5	43	15 - 112	11/14/11 08:40	11/18/11 23:43	5
Terphenyl-d14	41	10 - 132	11/14/11 08:40	11/18/11 23:43	5

4.9

0.32 ug/L

ND

Method:	6010B	- Lead
Analyte		

Pentachlorophenol

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	26	J	200	9.7	ug/L		11/11/11 09:31	11/14/11 14:44	1
Antimony	ND		10	1.3	ug/L		11/11/11 09:31	11/14/11 14:44	1
Arsenic	7.1	J	10	2.7	ug/L		11/11/11 09:31	11/14/11 14:44	1
Barium	100	J	200	0.62	ug/L		11/11/11 09:31	11/14/11 14:44	1
Boron	630		200	1.3	ug/L		11/11/11 09:31	11/14/11 14:44	1
Beryllium	0.40	J	4.0	0.23	ug/L		11/11/11 09:31	11/14/11 14:44	1
Cadmium	ND		5.0	0.13	ug/L		11/11/11 09:31	11/14/11 14:44	1
Calcium	200000		5000	9.7	ug/L		11/11/11 09:31	11/14/11 14:44	1
Chromium	1.7	J	5.0	0.57	ug/L		11/11/11 09:31	11/14/11 14:44	1
Cobalt	ND		50	0.40	ug/L		11/11/11 09:31	11/14/11 14:44	1
Copper	ND		25	2.7	ug/L		11/11/11 09:31	11/14/11 14:44	1
Iron	220		100	12	ug/L		11/11/11 09:31	11/14/11 14:44	1
Lead	ND		3.0	1.3	ug/L		11/11/11 09:31	11/14/11 14:44	1
Magnesium	2100	J	5000	21	ug/L		11/11/11 09:31	11/14/11 14:44	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-1W-11-9-11

Date Collected: 11/09/11 14:00 Date Received: 11/09/11 15:19 Lab Sample ID: 180-5712-2

TestAmerica Job ID: 180-5622-1

Matrix: Water

Method: 6010B - Lead (Con	ntinued)							
Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	28	15	0.68	ug/L		11/11/11 09:31	11/14/11 14:44	1
Nickel	ND	40	1.6	ug/L		11/11/11 09:31	11/14/11 14:44	1
Potassium	16000	5000	750	ug/L		11/11/11 09:31	11/14/11 14:44	1
Selenium	28	5.0	3.0	ug/L		11/11/11 09:31	11/14/11 14:44	1
Silver	ND	5.0	0.68	ug/L		11/11/11 09:31	11/14/11 14:44	1
Sodium	260000	5000	220	ug/L		11/11/11 09:31	11/14/11 14:44	1
Thallium	ND	10	2.4	ug/L		11/11/11 09:31	11/14/11 14:44	1
Vanadium	3.1 J	50	1.9	ug/L		11/11/11 09:31	11/14/11 14:44	1
Zinc	5.4 JB	20	2.5	ug/L		11/11/11 09:31	11/14/11 14:44	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.038	ug/L		11/29/11 13:52	11/29/11 18:43	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil and Grease)	2.3	J	4.8	1.4	mg/L		11/17/11 17:19	11/18/11 16:27	1
Ammonia, distilled	2.1		0.10	0.033	mg/L		11/15/11 10:00	11/15/11 14:56	1
Chemical Oxygen Demand	46		10	3.9	mg/L			11/11/11 05:53	1
Cyanide, Total	330		10	1.5	ug/L		11/11/11 12:00	11/14/11 09:16	1
pH	9.74	HF	0.100	0.100	SU			11/10/11 12:42	1
Total Suspended Solids	ND		4.0	2.0	mg/L			11/10/11 12:16	1

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30 Lab Sample ID: 180-5830-1

Matrix: Solid Percent Solids: 85.2

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND	24	6.0	ug/Kg	*	11/17/11 04:49	11/17/11 09:40	1
Benzene	ND	6.0	0.81	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
Bromodichloromethane	ND	6.0	0.67	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
Bromoform	ND	6.0	0.53	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Bromomethane	ND	6.0	0.88	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
2-Butanone (MEK)	ND	6.0	1.1	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Carbon disulfide	ND	6.0	0.61	ug/Kg	\$	11/17/11 04:49	11/17/11 09:40	1
Carbon tetrachloride	ND	6.0	0.53	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Chlorobenzene	ND	6.0	0.91	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Chloroethane	ND	6.0	1.9	ug/Kg	\$	11/17/11 04:49	11/17/11 09:40	1
Chloroform	ND	6.0	0.70	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Chloromethane	ND	6.0	1.0	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Dibromochloromethane	ND	6.0	0.85	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
1,1-Dichloroethane	ND	6.0	0.69	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
1,2-Dichloroethane	ND	6.0	0.73	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
1,1-Dichloroethene	ND	6.0	1.0	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
Acetonitrile	ND	120	27	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
1,2-Dichloropropane	ND	6.0	0.65	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
cis-1,3-Dichloropropene	ND	6.0	0.81	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
trans-1,3-Dichloropropene	ND	6.0	0.71	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
Ethylbenzene	ND	6.0	0.77	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-1

Matrix: Solid

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2-Hexanone	ND		6.0	0.83	ug/Kg	<u>.</u>	11/17/11 04:49	11/17/11 09:40	
Methylene Chloride		JB	6.0	0.80	ug/Kg	₩.	11/17/11 04:49	11/17/11 09:40	
4-Methyl-2-pentanone (MIBK)	ND		6.0		ug/Kg	<u>-</u>	11/17/11 04:49	11/17/11 09:40	
Bromochloromethane	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Styrene	ND		6.0		ug/Kg	#	11/17/11 04:49	11/17/11 09:40	
1,1,2,2-Tetrachloroethane	ND		6.0	0.86	ug/Kg		11/17/11 04:49	11/17/11 09:40	
Tetrachloroethene	ND		6.0	0.81	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	•
1,1,1-Trichloroethane	ND		6.0	0.58	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	•
1,1,2-Trichloroethane	ND		6.0	0.99	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Trichloroethene	ND		6.0	0.79	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	•
Vinyl chloride	ND		6.0	0.56	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	•
Xylenes, Total	ND		18	2.7	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	•
Cyclohexane	ND		6.0	0.44	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	•
1,2-Dibromo-3-Chloropropane	ND		6.0	0.90	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
1,2-Dibromoethane (EDB)	ND		6.0	1.0	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Dichlorodifluoromethane	ND		6.0	0.80	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	
cis-1,2-Dichloroethene	ND		6.0	0.84	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	•
trans-1,2-Dichloroethene	ND		6.0	0.71	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	•
Isopropylbenzene	ND		6.0	0.81	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	· · · · · · · · ·
Methyl acetate	ND		6.0	1.1	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Methylcyclohexane	ND		6.0	0.87	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Methyl tert-butyl ether	ND		6.0	0.89	ug/Kg		11/17/11 04:49	11/17/11 09:40	• • • • • • • • • • • • • • • • • • • •
Trichlorofluoromethane	ND		6.0	1.1	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.0	1.3	ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
1,2-Dichlorobenzene	ND		6.0		ug/Kg	-	11/17/11 04:49	11/17/11 09:40	₋
1,3-Dichlorobenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
1,4-Dichlorobenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
1,2,4-Trichlorobenzene	ND		6.0		ug/Kg	ф	11/17/11 04:49	11/17/11 09:40	,
Toluene	ND		6.0	0.87	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	
N-Propylbenzene	ND		6.0	0.91	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	
1,2,3-Trichloropropane	ND		6.0	1.1	ug/Kg	.	11/17/11 04:49	11/17/11 09:40	1
1,3,5-Trimethylbenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
tert-Butylbenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
1,2,4-Trimethylbenzene	ND		6.0		ug/Kg		11/17/11 04:49	11/17/11 09:40	,
sec-Butylbenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	1
n-Butylbenzene	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	'
Hexachlorobutadiene	ND		6.0		ug/Kg ug/Kg		11/17/11 04:49	11/17/11 09:40	,
Naphthalene	ND		6.0		ug/Kg ug/Kg	₽	11/17/11 04:49		
•	ND ND		120		ug/Kg ug/Kg	₽		11/17/11 09:40	
Acrolein							11/17/11 04:49	11/17/11 09:40	,
Acrylonitrile	ND		120		ug/Kg		11/17/11 04:49	11/17/11 09:40	
Methacrylonitrile	ND		6.0		ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	•
Isobutyl alcohol	ND		240		ug/Kg		11/17/11 04:49	11/17/11 09:40	
Methyl methacrylate	ND		6.0		ug/Kg	₩	11/17/11 04:49	11/17/11 09:40	
Ethyl methacrylate	ND		6.0		ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	
Vinyl acetate	ND		6.0		ug/Kg		11/17/11 04:49	11/17/11 09:40	
Hexane	ND		6.0	1.2	ug/Kg	₽	11/17/11 04:49	11/17/11 09:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		52 - 124				11/17/11 04:49	11/17/11 09:40	1
Toluene-d8 (Surr)	98		72 - 127				11/17/11 04:49	11/17/11 09:40	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-1

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		63 - 120	11/17/11 04:49	11/17/11 09:40	1
Dibromofluoromethane (Surr)	105		68 - 121	11/17/11 04:49	11/17/11 09:40	1

Dibromofluoromethane (Surr)	105		68 - 121				11/17/11 04:49	11/17/11 09:40	1
Method: 8270C - Semivolatile O	rganic Compou	nds (GC/MS))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.38	0.029	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Acenaphthene	0.34		0.078	0.0074	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Acetophenone	0.037	J	0.38	0.032	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Acenaphthylene	0.21		0.078	0.0089	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Anthracene	0.87		0.078	0.0076	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Benzo[a]anthracene	3.9		0.078	0.0097	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Benzo[a]pyrene	6.8		0.078	0.0077	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzo[b]fluoranthene	6.7		0.078	0.012	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzo[g,h,i]perylene	6.4		0.078	0.0077	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Benzo[k]fluoranthene	2.8		0.078	0.016	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Bis(2-chloroethyl)ether	ND		0.078	0.010	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Bis(2-chloroethoxy)methane	ND		0.38	0.025	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2,2'-oxybis[1-chloropropane]	ND		0.078	0.0083	mg/Kg		11/15/11 05:58	11/17/11 20:20	1
Bis(2-ethylhexyl) phthalate	0.10	J	0.78	0.062	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
4-Bromophenyl phenyl ether	ND		0.38	0.034	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Butyl benzyl phthalate	ND		0.38	0.053	mg/Kg	φ.	11/15/11 05:58	11/17/11 20:20	1
Carbazole	0.48		0.078	0.0071	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
4-Chloroaniline	ND		0.38	0.031	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2-Chloronaphthalene	ND		0.078	0.0081		ф.	11/15/11 05:58	11/17/11 20:20	1
4-Chlorophenyl phenyl ether	ND		0.38		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Chrysene	4.7		0.078	0.0092	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Dibenz(a,h)anthracene	2.2		0.078	0.0086	mg/Kg	φ.	11/15/11 05:58	11/17/11 20:20	1
Di-n-butyl phthalate	ND		0.38		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
3,3'-Dichlorobenzidine	ND		0.38	0.041	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Diethyl phthalate	ND		0.38	0.042	mg/Kg	φ.	11/15/11 05:58	11/17/11 20:20	1
Dimethyl phthalate	ND		0.38		mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2,4-Dinitrotoluene	ND		0.38	0.031	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2,6-Dinitrotoluene	ND		0.38	0.040	mg/Kg	ф	11/15/11 05:58	11/17/11 20:20	1
Di-n-octyl phthalate	ND		0.38		mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Fluoranthene	4.7		0.078	0.0083		₩	11/15/11 05:58	11/17/11 20:20	1
Fluorene	0.28		0.078		mg/Kg		11/15/11 05:58	11/17/11 20:20	1
Hexachlorobenzene	ND		0.078	0.0082		₩	11/15/11 05:58	11/17/11 20:20	1
3,3'-Dimethylbenzidine	ND		2.0	0.021	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Hexachlorobutadiene	ND		0.078	0.0087		-	11/15/11 05:58	11/17/11 20:20	1
Hexachlorocyclopentadiene	ND		0.38		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Hexachloroethane	ND		0.38		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Indeno[1,2,3-cd]pyrene	5.0		0.078	0.0080		ф	11/15/11 05:58	11/17/11 20:20	1
Isophorone	ND		0.38		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2-Methylnaphthalene	0.58		0.078	0.0070		₽	11/15/11 05:58	11/17/11 20:20	1
Naphthalene	0.60		0.078	0.0067		ф	11/15/11 05:58	11/17/11 20:20	
2-Nitroaniline	ND		2.0		mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
3-Nitroaniline	ND		2.0		mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	. 1
4-Nitroaniline	ND		2.0		mg/Kg	-	11/15/11 05:58	11/17/11 20:20	
Nitrobenzene	ND		0.78		mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
N-Nitrosodi-n-propylamine	ND ND		0.78	0.0091		₽	11/15/11 05:58	11/17/11 20:20	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30 TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodiphenylamine	ND		0.38	0.036	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Phenanthrene	2.9		0.078	0.012	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Pyrene	4.8		0.078	0.0078	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
4-Chloro-3-methylphenol	ND		0.38	0.036	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2-Chlorophenol	ND		0.38	0.032	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Aniline	ND		0.38	0.030	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2-Methylphenol	0.073	J	0.38	0.027	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Methylphenol, 3 & 4	0.19	J	0.38	0.038	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2,4-Dichlorophenol	ND		0.078	0.0078	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2,4-Dimethylphenol	0.090	J	0.38	0.060	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2,4-Dinitrophenol	ND		2.0	0.46	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
4,6-Dinitro-2-methylphenol	ND		2.0	0.16	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2-Nitrophenol	ND		0.38	0.043	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzyl alcohol	ND		0.38	0.047	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
4-Nitrophenol	ND		2.0	0.14	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Pentachlorophenol	ND		0.38	0.035	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Phenol	0.080		0.078	0.0091	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
2,4,5-Trichlorophenol	ND		0.38	0.041	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
2,4,6-Trichlorophenol	ND		0.38	0.058	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
1,1'-Biphenyl	0.11	J	0.38	0.034	mg/Kg	₩	11/15/11 05:58	11/17/11 20:20	1
Caprolactam	ND		2.0	0.29	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzaldehyde	ND		0.38	0.058	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Atrazine	ND	*	0.38	0.038	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzoic acid	ND		2.0	0.16	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
Benzidine	ND		7.8	1.6	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
1,4-Dioxane	ND		0.78	0.044	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.38	0.049	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1
o-Toluidine	ND		0.38	0.029	mg/Kg	₽	11/15/11 05:58	11/17/11 20:20	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		25 _ 104	11/15/11 05:58	11/17/11 20:20	1
2-Fluorobiphenyl	65		35 ₋ 105	11/15/11 05:58	11/17/11 20:20	1
Terphenyl-d14	65		25 _ 127	11/15/11 05:58	11/17/11 20:20	1
Phenol-d5	71		25 _ 105	11/15/11 05:58	11/17/11 20:20	1
2-Fluorophenol	63		39 - 103	11/15/11 05:58	11/17/11 20:20	1
2,4,6-Tribromophenol	52		35 - 124	11/15/11 05:58	11/17/11 20:20	1

Method: 8081A - C	Organochlorine Pesticides	(GC)
-------------------	---------------------------	------

Method: 0001A - Organochionne i es	iliciaes (O	-)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.020	0.0026	mg/Kg	\$	11/14/11 04:19	11/16/11 11:20	10
4,4'-DDE	ND		0.020	0.0030	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
4,4'-DDT	ND		0.020	0.0029	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Aldrin	ND		0.020	0.0035	mg/Kg	\$	11/14/11 04:19	11/16/11 11:20	10
alpha-BHC	ND		0.020	0.0032	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
beta-BHC	ND		0.020	0.0051	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
delta-BHC	ND		0.020	0.0030	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Dieldrin	ND		0.020	0.0033	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Endosulfan I	ND		0.020	0.0037	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Endosulfan II	ND		0.020	0.0035	mg/Kg	φ.	11/14/11 04:19	11/16/11 11:20	10
Endosulfan sulfate	ND		0.020	0.0020	mg/Kg	☼	11/14/11 04:19	11/16/11 11:20	10

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30

Lab Sample ID: 180-5830-1

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin	ND		0.020	0.0038	mg/Kg	*	11/14/11 04:19	11/16/11 11:20	10
Diallate	ND		0.39	0.033	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
gamma-BHC (Lindane)	0.031		0.020	0.0034	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
gamma-Chlordane	ND		0.020	0.0039	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Heptachlor	ND		0.020	0.0044	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Heptachlor epoxide	ND		0.020	0.0038	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Methoxychlor	0.0092	Jp	0.039	0.0041	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Toxaphene	ND		0.79	0.13	mg/Kg	₽	11/14/11 04:19	11/16/11 11:20	10
Chlordane (technical)	ND		0.20	0.0086	mg/Kg	₩	11/14/11 04:19	11/16/11 11:20	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		pΧD	45 - 130				11/14/11 04:19	11/16/11 11:20	10
Tetrachloro-m-xylene	74	D	45 - 130				11/14/11 04:19	11/16/11 11:20	10
DCB Decachlorobiphenyl (Surr)	96	D	45 - 130				11/14/11 04:19	11/16/11 11:20	10
DCB Decachlorobiphenyl (Surr)	0.5	pXD	45 - 130				11/14/11 04:19	11/16/11 11:20	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020	0.0029	mg/Kg	₩	11/14/11 04:19	11/16/11 18:21	1
PCB-1221	ND		0.020	0.0037	mg/Kg	≎	11/14/11 04:19	11/16/11 18:21	1
PCB-1232	ND		0.020	0.0034	mg/Kg	₽	11/14/11 04:19	11/16/11 18:21	1
PCB-1242	ND		0.020	0.0032	mg/Kg	φ	11/14/11 04:19	11/16/11 18:21	1
PCB-1248	ND		0.020	0.0019	mg/Kg	₽	11/14/11 04:19	11/16/11 18:21	1
PCB-1254	ND		0.020	0.0028	mg/Kg	₽	11/14/11 04:19	11/16/11 18:21	1
PCB-1260	ND		0.020	0.0028	mg/Kg	₽	11/14/11 04:19	11/16/11 18:21	1
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		35 - 140	11/14/11 04:19	11/16/11 18:21	1
DCB Decachlorobiphenyl (Surr)	90		35 - 140	11/14/11 04:19	11/16/11 18:21	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Method: 8151A - Herbicides (GC)							
DCB Decachlorobiphenyl (Surr)	90	35 - 140			11/14/11 04:19	11/16/11 18:21	1

2,4-D		ND		0.094	0.0064	mg/Kg	*	11/15/11 10:04	11/18/11 09:27	20
2,4,5-T		ND		0.023	0.0029	mg/Kg	₽	11/15/11 10:04	11/18/11 09:27	20
Silvex (2,4,5-TP)		ND		0.023	0.0025	mg/Kg	₩	11/15/11 10:04	11/18/11 09:27	20
	•	· -								
Surrogate	9	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2,4-Dichlorophenylace		6Recovery 46	Qualifier	42 - 140				Prepared 11/15/11 10:04	Analyzed 11/18/11 09:03	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.38	J	1.1	0.18	mg/Kg		11/28/11 11:45	11/29/11 20:20	1
Arsenic	5.1		1.1	0.25	mg/Kg	₩	11/28/11 11:45	11/29/11 20:20	1
Barium	260	В	22	0.056	mg/Kg	₩	11/28/11 11:45	11/29/11 20:20	1
Boron	86		22	0.29	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Beryllium	4.9	В	0.45	0.017	mg/Kg	₩	11/28/11 11:45	11/29/11 20:20	1
Cadmium	ND		0.56	0.027	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Chromium	16	В	0.56	0.095	mg/Kg	*	11/28/11 11:45	11/29/11 20:20	1
Cobalt	1.8	J	5.6	0.10	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Copper	13		2.8	0.38	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Lead	12		0.34	0.16	mg/Kg		11/28/11 11:45	11/29/11 20:20	1

Client Sample ID: B-3(6')-11/10/11

Date Collected: 11/10/11 09:00 Date Received: 11/11/11 12:30

Lab Sample ID: 180-5830-1

TestAmerica Job ID: 180-5622-1

Matrix: Solid

Percent Solids: 85.2

Method: 6010B - Metals (ICP) (Contin	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	2100		1.7	0.054	mg/Kg	*	11/28/11 11:45	11/29/11 20:20	1
Nickel	9.3		4.5	0.43	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Selenium	3.4		0.56	0.23	mg/Kg	\$	11/28/11 11:45	11/29/11 20:20	1
Silver	ND		0.56	0.065	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Thallium	ND		1.1	0.23	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Vanadium	7.5		5.6	0.21	mg/Kg	*	11/28/11 11:45	11/29/11 20:20	1
Zinc	57	В	2.2	0.25	mg/Kg	₽	11/28/11 11:45	11/29/11 20:20	1
Tin	1.9	J	11	0.60	mg/Kg	₩	11/28/11 11:45	11/29/11 20:20	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.14		0.037	0.012	mg/Kg	<u> </u>	11/30/11 07:50	11/30/11 12:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (III)	16		0.013	0.0021	mg/Kg			12/07/11 10:55	1
Cr (VI)	ND		0.46	0.11	mg/Kg	₽	11/29/11 12:30	12/02/11 12:50	1
Percent Moisture	15		0.10	0.10	%			11/12/11 12:14	1
Cyanide, Total	5.4		2.9	0.58	mg/Kg	\$	11/18/11 13:22	11/19/11 17:45	5
Cyanide, Weak Acid Dissociable	0.83	^	0.59	0.19	mg/Kg	₽	11/23/11 10:23	11/23/11 15:43	1
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.47	0.12	mg/Kg	☼	11/29/11 16:00	12/02/11 15:03	1

RL

9.9

0.49

0.49

9.9

MDL Unit

2.2 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

1.2 mg/Kg

Result Qualifier

30

25

ND

980 B

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

General Chemistry - Soluble

Analyte

Chloride

Nitrate as N

Nitrite as N

Sulfate

Lab Sample ID: 180-5830-2 **Matrix: Solid**

Analyzed

11/16/11 23:20

11/16/11 23:20

11/16/11 23:20

11/16/11 23:20

Dil Fac

Prepared

D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		18	4.6	ug/Kg	*	11/17/11 04:49	11/17/11 10:03	1
Benzene	ND		4.6	0.62	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	1
Bromodichloromethane	ND		4.6	0.52	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Bromoform	ND		4.6	0.41	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Bromomethane	ND		4.6	0.68	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	1
2-Butanone (MEK)	ND		4.6	0.81	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Carbon disulfide	ND		4.6	0.47	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Carbon tetrachloride	ND		4.6	0.41	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Chlorobenzene	ND		4.6	0.70	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Chloroethane	ND		4.6	1.4	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Chloroform	ND		4.6	0.54	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Chloromethane	ND		4.6	0.79	ug/Kg	☼	11/17/11 04:49	11/17/11 10:03	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromochloromethane	ND		4.6	0.65	ug/Kg	\	11/17/11 04:49	11/17/11 10:03	
1,1-Dichloroethane	ND		4.6	0.53	ug/Kg	φ-	11/17/11 04:49	11/17/11 10:03	
1,2-Dichloroethane	ND		4.6	0.57	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,1-Dichloroethene	ND		4.6	0.78	ug/Kg		11/17/11 04:49	11/17/11 10:03	
Acetonitrile	ND		92	21	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,2-Dichloropropane	ND		4.6	0.50	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
cis-1,3-Dichloropropene	ND		4.6	0.63	ug/Kg		11/17/11 04:49	11/17/11 10:03	
trans-1,3-Dichloropropene	ND		4.6	0.55	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
Ethylbenzene	ND		4.6	0.59	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
2-Hexanone	ND		4.6	0.64	ug/Kg	-	11/17/11 04:49	11/17/11 10:03	
Methylene Chloride		JB	4.6	0.62	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
4-Methyl-2-pentanone (MIBK)	ND	0.5	4.6	0.60	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
Bromochloromethane	ND		4.6	0.63	ug/Kg	 Ф	11/17/11 04:49	11/17/11 10:03	
Styrene	ND		4.6		ug/Kg ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
1,1,2,2-Tetrachloroethane	ND ND		4.6	0.66	ug/Kg ug/Kg		11/17/11 04:49	11/17/11 10:03	
Tetrachloroethene	ND ND		4.6		ug/Kg ug/Kg		11/17/11 04:49	11/17/11 10:03	
	ND ND		4.6				11/17/11 04:49	11/17/11 10:03	
1,1,1-Trichloroethane	ND ND		4.6		ug/Kg		11/17/11 04:49	11/17/11 10:03	
1,1,2-Trichloroethane					ug/Kg				
Trichloroethene	ND		4.6	0.61	ug/Kg	‡	11/17/11 04:49	11/17/11 10:03	
Vinyl chloride	ND		4.6	0.43	ug/Kg	\$	11/17/11 04:49	11/17/11 10:03	
Xylenes, Total	ND		14	2.1	ug/Kg		11/17/11 04:49	11/17/11 10:03	
Cyclohexane	ND		4.6	0.34	ug/Kg	₩.	11/17/11 04:49	11/17/11 10:03	
1,2-Dibromo-3-Chloropropane	ND		4.6	0.69	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
1,2-Dibromoethane (EDB)	ND		4.6	0.80	ug/Kg		11/17/11 04:49	11/17/11 10:03	
Dichlorodifluoromethane	ND		4.6	0.61	ug/Kg	*	11/17/11 04:49	11/17/11 10:03	
cis-1,2-Dichloroethene	ND		4.6	0.65	ug/Kg	*	11/17/11 04:49	11/17/11 10:03	
trans-1,2-Dichloroethene	ND		4.6	0.55	ug/Kg		11/17/11 04:49	11/17/11 10:03	
Isopropylbenzene	ND		4.6	0.63	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
Methyl acetate	ND		4.6	0.83	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
Methylcyclohexane	ND		4.6	0.67	ug/Kg		11/17/11 04:49	11/17/11 10:03	
Methyl tert-butyl ether	ND		4.6	0.69	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
Trichlorofluoromethane	ND		4.6	0.85	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.6	0.98	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,2-Dichlorobenzene	ND		4.6	0.74	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,3-Dichlorobenzene	ND		4.6	0.61	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,4-Dichlorobenzene	ND		4.6	0.59	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,2,4-Trichlorobenzene	ND		4.6	0.81	ug/Kg	\$	11/17/11 04:49	11/17/11 10:03	
Toluene	ND		4.6	0.67	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
N-Propylbenzene	ND		4.6	0.71	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,2,3-Trichloropropane	ND		4.6	0.86	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,3,5-Trimethylbenzene	ND		4.6	0.62	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
tert-Butylbenzene	ND		4.6	0.65	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
1,2,4-Trimethylbenzene	ND		4.6	0.60	ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
sec-Butylbenzene	ND		4.6		ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
n-Butylbenzene	ND		4.6		ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
	ND		4.6		ug/Kg	-	11/17/11 04:49	11/17/11 10:03	
Naphthalene	ND		4.6	0.93	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	
Acrolein	ND		92		ug/Kg	₩	11/17/11 04:49	11/17/11 10:03	
Acrylonitrile	ND		92		ug/Kg	φ.	11/17/11 04:49	11/17/11 10:03	
Methacrylonitrile	ND		4.6		ug/Kg ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isobutyl alcohol	ND		180	24	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Methyl methacrylate	ND		4.6	0.63	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Ethyl methacrylate	ND		4.6	0.39	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Vinyl acetate	ND		4.6	0.33	ug/Kg	₽	11/17/11 04:49	11/17/11 10:03	1
Hexane	ND		4.6	0.93	ug/Kg	*	11/17/11 04:49	11/17/11 10:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		52 - 124				11/17/11 04:49	11/17/11 10:03	1
Toluene-d8 (Surr)	101		72 - 127				11/17/11 04:49	11/17/11 10:03	1
4-Bromofluorobenzene (Surr)	101		63 - 120				11/17/11 04:49	11/17/11 10:03	1
Dibromofluoromethane (Surr)	103		68 - 121				11/17/11 04:49	11/17/11 10:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.37	0.029	mg/Kg	*	11/15/11 05:58	11/21/11 15:21	1
Acenaphthene	0.024	J	0.076	0.0073	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Acetophenone	ND		0.37	0.031	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Acenaphthylene	ND		0.076	0.0087	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
Anthracene	0.054	J	0.076	0.0074	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Benzo[a]anthracene	0.28		0.076	0.0095	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Benzo[a]pyrene	0.43		0.076	0.0076	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Benzo[b]fluoranthene	0.43		0.076	0.012	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Benzo[g,h,i]perylene	0.25		0.076	0.0075	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Benzo[k]fluoranthene	0.24		0.076	0.015	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Bis(2-chloroethyl)ether	ND		0.076	0.010	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Bis(2-chloroethoxy)methane	ND		0.37	0.025	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,2'-oxybis[1-chloropropane]	ND		0.076	0.0082	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
Bis(2-ethylhexyl) phthalate	ND		0.76	0.061	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Bromophenyl phenyl ether	ND		0.37	0.033	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Butyl benzyl phthalate	ND		0.37	0.052	mg/Kg	₩.	11/15/11 05:58	11/21/11 15:21	1
Carbazole	0.034	J	0.076	0.0070	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Chloroaniline	ND		0.37	0.030	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
2-Chloronaphthalene	ND		0.076	0.0079	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Chlorophenyl phenyl ether	ND		0.37	0.042	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Chrysene	0.33		0.076	0.0090	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Dibenz(a,h)anthracene	0.078		0.076	0.0084	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Di-n-butyl phthalate	ND		0.37	0.047	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
3,3'-Dichlorobenzidine	ND		0.37	0.040	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Diethyl phthalate	ND		0.37	0.041	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Dimethyl phthalate	ND		0.37	0.041	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,4-Dinitrotoluene	ND		0.37	0.031	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,6-Dinitrotoluene	ND		0.37	0.039	mg/Kg		11/15/11 05:58	11/21/11 15:21	1
Di-n-octyl phthalate	ND		0.37	0.040	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Fluoranthene	0.34		0.076	0.0081	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Fluorene	0.022	J	0.076	0.010	mg/Kg		11/15/11 05:58	11/21/11 15:21	1
Hexachlorobenzene	ND		0.076	0.0081	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
3,3'-Dimethylbenzidine	ND		1.9	0.020	mg/Kg	☼	11/15/11 05:58	11/21/11 15:21	1
Hexachlorobutadiene	ND		0.076	0.0085	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
Hexachlorocyclopentadiene	ND		0.37	0.041	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Hexachloroethane	ND		0.37	0.027	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Indeno[1,2,3-cd]pyrene	0.20		0.076	0.0078	mg/Ka		11/15/11 05:58	11/21/11 15:21	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

Lab Sample ID: 180-5830-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isophorone	ND		0.37	0.029	mg/Kg	*	11/15/11 05:58	11/21/11 15:21	1
2-Methylnaphthalene	0.032	J	0.076	0.0068	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Naphthalene	0.053	J	0.076	0.0065	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
2-Nitroaniline	ND		1.9	0.17	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
3-Nitroaniline	ND		1.9	0.16	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Nitroaniline	ND		1.9	0.15	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Nitrobenzene	ND		0.76	0.032	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
N-Nitrosodi-n-propylamine	ND		0.076	0.0089	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
N-Nitrosodiphenylamine	ND		0.37	0.035	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Phenanthrene	0.19		0.076	0.012	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Pyrene	0.31		0.076	0.0077	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Chloro-3-methylphenol	ND		0.37	0.035	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
2-Chlorophenol	ND		0.37	0.031	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Aniline	ND		0.37	0.029	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2-Methylphenol	ND		0.37	0.026	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Methylphenol, 3 & 4	ND		0.37	0.037	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,4-Dichlorophenol	ND		0.076	0.0076	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,4-Dimethylphenol	ND		0.37	0.059	mg/Kg		11/15/11 05:58	11/21/11 15:21	1
2,4-Dinitrophenol	ND		1.9	0.45	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4,6-Dinitro-2-methylphenol	ND		1.9	0.15	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2-Nitrophenol	ND		0.37	0.042	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
Benzyl alcohol	ND		0.37	0.046	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
4-Nitrophenol	ND		1.9	0.14	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Pentachlorophenol	ND		0.37	0.034	mg/Kg	₩.	11/15/11 05:58	11/21/11 15:21	1
Phenol	0.034	J	0.076	0.0089	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,4,5-Trichlorophenol	ND		0.37	0.040	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
2,4,6-Trichlorophenol	ND		0.37	0.057	mg/Kg	₩.	11/15/11 05:58	11/21/11 15:21	1
1,1'-Biphenyl	ND		0.37	0.034	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Caprolactam	ND		1.9	0.29	mg/Kg	₩	11/15/11 05:58	11/21/11 15:21	1
Benzaldehyde	ND		0.37	0.057	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
Atrazine	ND		0.37	0.037	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Benzoic acid	ND		1.9	0.16	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Benzidine	ND		7.6	1.6	mg/Kg	\$	11/15/11 05:58	11/21/11 15:21	1
1,4-Dioxane	ND		0.76	0.043	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
1,2-Diphenylhydrazine(as	ND		0.37	0.048	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Azobenzene)									
o-Toluidine	ND		0.37	0.028	mg/Kg	₽	11/15/11 05:58	11/21/11 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nii - L							444544.05.50	44/04/44 45 04	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	79	25 - 104	11/15/11 05:58	11/21/11 15:21	1
2-Fluorobiphenyl	75	35 - 105	11/15/11 05:58	11/21/11 15:21	1
Terphenyl-d14	80	25 - 127	11/15/11 05:58	11/21/11 15:21	1
Phenol-d5	90	25 - 105	11/15/11 05:58	11/21/11 15:21	1
2-Fluorophenol	72	39 - 103	11/15/11 05:58	11/21/11 15:21	1
2,4,6-Tribromophenol	35	35 - 124	11/15/11 05:58	11/21/11 15:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0019	0.00025	mg/Kg	₩	11/14/11 04:19	11/16/11 12:17	1
4,4'-DDE	ND		0.0019	0.00028	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	1
4,4'-DDT	ND		0.0019	0.00028	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

DCB Decachlorobiphenyl (Surr)

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-2

Matrix: Solid

Percent Solids: 88.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aldrin	ND		0.0019	0.00034	mg/Kg	*	11/14/11 04:19	11/16/11 12:17	
alpha-BHC	ND		0.0019	0.00031	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	
beta-BHC	ND		0.0019	0.00049	mg/Kg	₩	11/14/11 04:19	11/16/11 12:17	•
delta-BHC	ND		0.0019	0.00029	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	
Dieldrin	ND		0.0019	0.00031	mg/Kg	₩	11/14/11 04:19	11/16/11 12:17	•
Endosulfan I	ND		0.0019	0.00035	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Endosulfan II	ND		0.0019	0.00033	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	
Endosulfan sulfate	ND		0.0019	0.00020	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Endrin	ND		0.0019	0.00036	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Diallate	ND		0.037	0.0031	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	
gamma-BHC (Lindane)	0.0042		0.0019	0.00033	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
gamma-Chlordane	ND		0.0019	0.00037	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Heptachlor	ND		0.0019	0.00042	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	
Heptachlor epoxide	ND		0.0019	0.00037	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Methoxychlor	0.28		0.0037	0.00039	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Toxaphene	ND		0.076	0.013	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	,
Chlordane (technical)	ND		0.019	0.00083	mg/Kg	₽	11/14/11 04:19	11/16/11 12:17	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	77		45 - 130				11/14/11 04:19	11/16/11 12:17	
Tetrachloro-m-xylene	77		45 - 130				11/14/11 04:19	11/16/11 12:17	1
DCB Decachlorobiphenyl (Surr)	84		45 - 130				11/14/11 04:19	11/16/11 12:17	
DCB Decachlorobiphenyl (Surr)	78		45 - 130				11/14/11 04:19	11/16/11 12:17	
Method: 8082 - Polychlorinated	d Biphenvis (PCI	Bs) by Gas (Chromatogran	hv					
Analyte	Result	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.019	0.0028	mg/Kg	\tilde{\pi}	11/14/11 04:19	11/16/11 18:50	
PCB-1221	ND		0.019	0.0036	mg/Kg	₩	11/14/11 04:19	11/16/11 18:50	•
PCB-1232	ND		0.019	0.0032	mg/Kg	₩	11/14/11 04:19	11/16/11 18:50	•
PCB-1242	ND		0.019	0.0031	mg/Kg	₽	11/14/11 04:19	11/16/11 18:50	
PGB-1242			0.019	0.0018	mg/Kg	₽	11/14/11 04:19	11/16/11 18:50	
PCB-1242 PCB-1248	ND		0.019						
PCB-1248	ND ND		0.019	0.0027	mg/Kg	₽	11/14/11 04:19	11/16/11 18:50	
PCB-1248 PCB-1254				0.0027	mg/Kg mg/Kg	\$ \$	11/14/11 04:19 11/14/11 04:19	11/16/11 18:50 11/16/11 18:50	
	ND	Qualifier	0.019	0.0027					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.090	0.0062	mg/Kg	₩	11/15/11 10:04	11/18/11 09:51	20
2,4,5-T	ND		0.023	0.0028	mg/Kg	₽	11/15/11 10:04	11/18/11 09:51	20
Silvex (2,4,5-TP)	ND		0.023	0.0024	mg/Kg	₽	11/15/11 10:04	11/18/11 09:51	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	58		42 - 140				11/15/11 10:04	11/18/11 09:27	20
2,4-Dichlorophenylacetic acid	59		42 - 140				11/15/11 10:04	11/18/11 09:51	20

35 - 140

109

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.1	0.18	mg/Kg	*	11/28/11 11:45	11/29/11 20:26	1
Arsenic	1.4		1.1	0.24	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	1

11/14/11 04:19 11/16/11 18:50

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Client Sample ID: B-3(16')-11/10/11

Date Collected: 11/10/11 10:00 Date Received: 11/11/11 12:30

TestAmerica Job ID: 180-5622-1

Lab Sample ID: 180-5830-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Barium	220	В	22	0.054	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	-
Boron	110		22	0.28	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	
Beryllium	4.7	В	0.43	0.016	mg/Kg	₩	11/28/11 11:45	11/29/11 20:26	
Cadmium	ND		0.54	0.026	mg/Kg	₩	11/28/11 11:45	11/29/11 20:26	
Chromium	5.4	В	1.1	0.18	mg/Kg	\$	11/28/11 11:45	11/30/11 15:09	
Cobalt	ND		5.4	0.096	mg/Kg	₩	11/28/11 11:45	11/29/11 20:26	
Copper	0.83	J	2.7	0.37	mg/Kg	₩	11/28/11 11:45	11/29/11 20:26	
Lead	0.61		0.32	0.16	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	
Manganese	2900		3.2	0.10	mg/Kg	₩	11/28/11 11:45	11/30/11 15:09	
Nickel	0.68	J	4.3	0.41	mg/Kg	₩	11/28/11 11:45	11/29/11 20:26	
Selenium	2.4		1.1	0.45	mg/Kg	₽	11/28/11 11:45	11/30/11 15:09	
Silver	ND		1.1	0.13	mg/Kg	₩	11/28/11 11:45	11/30/11 15:09	
Thallium	ND		2.2	0.45	mg/Kg	₩	11/28/11 11:45	11/30/11 15:09	
Vanadium	11		5.4	0.20	mg/Kg		11/28/11 11:45	11/29/11 20:26	
Zinc	2.2	В	2.2	0.24	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	
Tin	0.87	J	11	0.58	mg/Kg	₽	11/28/11 11:45	11/29/11 20:26	
Mercury	0.013	J	0.037	0.012	mg/Kg	*	11/30/11 07:50	11/30/11 12:04	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Cr (III)	5.4		0.013	0.0021	mg/Kg			12/07/11 10:55	
Cr (VI)	ND		0.46	0.11	mg/Kg	₩	11/29/11 12:30	12/02/11 12:51	
Percent Moisture	12		0.10	0.10				11/12/11 12:14	
Cyanide, Total	4.9		0.58		mg/Kg	₽	11/18/11 13:22	11/19/11 17:32	
Cyanide, Weak Acid Dissociable	0.24	J ^	0.57	0.18	mg/Kg	₽	11/23/11 10:23	11/23/11 15:25	
General Chemistry - RE									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cr (VI)	ND		0.46	0.11	mg/Kg	#	11/29/11 16:00	12/02/11 15:04	
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	74	В	9.9	2.2	mg/Kg			11/16/11 23:48	_
Nitrate as N	8.3		0.49	0.15	mg/Kg			11/16/11 23:48	
Niiduida aa Ni	0.23	.1	0.49	0.16	mg/Kg			11/16/11 23:48	
Nitrite as N	0.23	•	00	00	99				

RL

MDL Unit

D

Prepared

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 05:10

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

11/07/11 08:01

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

ND

Result Qualifier

Lab Sample ID: MB 180-19864/1-A

Matrix: Solid

Analyte

Analysis Batch: 19871

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Cyclohexane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane (EDB)

Dichlorodifluoromethane

trans-1.2-Dichloroethene

cis-1,2-Dichloroethene

Isopropylbenzene

Methylcyclohexane

Methyl tert-butyl ether

Trichlorofluoromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2,4-Trichlorobenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Methyl acetate

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prep Batch: 19864

Dil Fac

riidiyto	Moodil Qualifier			0	_	. ropurou	Analyzou	D uo
Acetone	ND ND	20	5.0	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Benzene	ND	5.0	0.68	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Bromodichloromethane	ND	5.0	0.56	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Bromoform	ND	5.0	0.44	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Bromomethane	ND	5.0	0.74	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
2-Butanone (MEK)	ND	5.0	0.88	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Carbon disulfide	ND	5.0	0.51	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Carbon tetrachloride	ND	5.0	0.45	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Chlorobenzene	ND	5.0	0.76	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Chloroethane	ND	5.0	1.5	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Chloroform	ND	5.0	0.58	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Chloromethane	ND	5.0	0.85	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Dibromochloromethane	ND	5.0	0.71	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,1-Dichloroethane	ND	5.0	0.58	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,2-Dichloroethane	ND	5.0	0.61	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,1-Dichloroethene	ND	5.0	0.85	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Acetonitrile	ND	100	23	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,2-Dichloropropane	ND	5.0	0.54	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
cis-1,3-Dichloropropene	ND	5.0	0.68	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
trans-1,3-Dichloropropene	ND	5.0	0.60	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Ethylbenzene	ND	5.0	0.64	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
2-Hexanone	ND	5.0	0.69	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Methylene Chloride	0.978 J	5.0	0.67	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.65	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Bromochloromethane	ND	5.0	0.69	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Styrene	ND	5.0	0.71	ug/Kg		11/07/11 05:10	11/07/11 08:01	1

5.0

5.0

5.0

5.0

5.0

5.0

15

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

0.72 ug/Kg

0.66 ug/Kg

0.47 ug/Kg

2.2 ug/Kg

0.75 ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

0.90 ug/Kg

0.75 ug/Kg

0.92 ug/Kg

0.88 ug/Kg

ug/Kg

0.68

0.49

0.83

0.37

0.86

0.67

0.70

0.60

0.73 ug/Kg

1.1 ug/Kg

0.80

0.66 ug/Kg

0.64 ug/Kg

> TestAmerica Pittsburgh 12/14/2011

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-19864/1-A

Matrix: Solid

Analysis Batch: 19871

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 19864

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		5.0	0.73	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
N-Propylbenzene	ND		5.0	0.76	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,2,3-Trichloropropane	ND		5.0	0.93	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,3,5-Trimethylbenzene	ND		5.0	0.67	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
tert-Butylbenzene	ND		5.0	0.71	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
1,2,4-Trimethylbenzene	ND		5.0	0.65	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
sec-Butylbenzene	ND		5.0	0.78	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
n-Butylbenzene	ND		5.0	0.80	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Hexachlorobutadiene	ND		5.0	1.1	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Naphthalene	1.07	J	5.0	1.0	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Acrolein	ND		100	7.0	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Acrylonitrile	ND		100	10	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Methacrylonitrile	ND		5.0	0.30	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Isobutyl alcohol	ND		200	26	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Methyl methacrylate	ND		5.0	0.69	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Ethyl methacrylate	ND		5.0	0.42	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Vinyl acetate	ND		5.0	0.35	ug/Kg		11/07/11 05:10	11/07/11 08:01	1
Hexane	ND		5.0	1.0	ug/Kg		11/07/11 05:10	11/07/11 08:01	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		52 - 124	11/07/11 05:10	11/07/11 08:01	1
Toluene-d8 (Surr)	102		72 - 127	11/07/11 05:10	11/07/11 08:01	1
4-Bromofluorobenzene (Surr)	98		63 - 120	11/07/11 05:10	11/07/11 08:01	1
Dibromofluoromethane (Surr)	99		68 - 121	11/07/11 05:10	11/07/11 08:01	1

Lab Sample ID: LCS 180-19864/2-A

Matrix: Solid

Analysis Batch: 19871

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 19864

Spike LCS LCS Analyte Added Result Qualifier D %Rec Limits Unit Acetone 40.0 50.8 20 - 150 ug/Kg 127 Benzene 40.0 40.9 102 77 - 120 ug/Kg 70 - 125 Bromodichloromethane 40.0 42.3 ug/Kg 106 Bromoform 40.0 38.3 ug/Kg 96 53 - 140 Bromomethane 40.0 35.5 89 25 - 150 ug/Kg 2-Butanone (MEK) 40.0 43.0 ug/Kg 107 35 - 149 Carbon disulfide 40.0 34.3 86 50 - 127 ug/Kg Carbon tetrachloride 40.0 44.6 112 69 - 122 ug/Kg Chlorobenzene 40.0 41.7 104 79 - 120 ug/Kg Chloroethane 40.0 38.1 ug/Kg 95 22 - 150 Chloroform 40.0 40.6 ug/Kg 102 72 - 120 Chloromethane 40.0 31.5 44 - 131 ug/Kg 79 70 - 132 Dibromochloromethane 40.0 44.6 111 ug/Kg 40.0 40.6 66 - 124 1,1-Dichloroethane ug/Kg 101 1,2-Dichloroethane 40.0 39.8 99 61 - 127 ug/Kg 59 - 129 1,1-Dichloroethene 40.0 44.0 ug/Kg 110 1,2-Dichloropropane 40.0 40.7 ug/Kg 102 72 - 122 cis-1,3-Dichloropropene 40.0 41.5 ug/Kg 104 73 - 120 trans-1,3-Dichloropropene 40.0 42.8 ug/Kg 107 74 - 129

Spike

LCS LCS

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-19864/2-A

Matrix: Solid

n-Butylbenzene

Naphthalene

Hexachlorobutadiene

Analysis Batch: 19871

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 19864

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	40.0	41.8		ug/Kg		104	78 - 125	
2-Hexanone	40.0	48.0		ug/Kg		120	32 _ 150	
Methylene Chloride	40.0	40.0		ug/Kg		100	58 - 127	
4-Methyl-2-pentanone (MIBK)	40.0	44.2		ug/Kg		110	44 - 148	
Bromochloromethane	40.0	41.2		ug/Kg		103	67 - 126	
Styrene	40.0	42.4		ug/Kg		106	83 - 129	
1,1,2,2-Tetrachloroethane	40.0	43.2		ug/Kg		108	60 - 139	
Tetrachloroethene	40.0	41.2		ug/Kg		103	78 - 129	
1,1,1-Trichloroethane	40.0	45.1		ug/Kg		113	67 - 126	
1,1,2-Trichloroethane	40.0	39.8		ug/Kg		100	70 - 128	
Trichloroethene	40.0	40.7		ug/Kg		102	76 ₋ 119	
Vinyl chloride	40.0	37.1		ug/Kg		93	63 - 124	
Cyclohexane	40.0	42.8		ug/Kg		107	64 - 130	
1,2-Dibromo-3-Chloropropane	40.0	38.9		ug/Kg		97	35 - 136	
1,2-Dibromoethane (EDB)	40.0	41.9		ug/Kg		105	70 - 131	
Dichlorodifluoromethane	40.0	28.1		ug/Kg		70	25 - 150	
cis-1,2-Dichloroethene	40.0	41.0		ug/Kg		102	80 - 118	
trans-1,2-Dichloroethene	40.0	42.9		ug/Kg		107	77 - 121	
Isopropylbenzene	40.0	42.9		ug/Kg		107	70 - 133	
Methyl acetate	40.0	37.2		ug/Kg		93	27 _ 142	
Methylcyclohexane	40.0	41.0		ug/Kg		102	66 - 135	
Methyl tert-butyl ether	40.0	41.0		ug/Kg		103	48 - 132	
Trichlorofluoromethane	40.0	35.3		ug/Kg		88	20 - 150	
1,1,2-Trichloro-1,2,2-trifluoroetha	40.0	38.4		ug/Kg		96	55 - 130	
ne								
1,2-Dichlorobenzene	40.0	41.3		ug/Kg		103	71 - 124	
1,3-Dichlorobenzene	40.0	41.5		ug/Kg		104	75 - 118	
1,4-Dichlorobenzene	40.0	41.4		ug/Kg		104	77 - 116	
1,2,4-Trichlorobenzene	40.0	39.2		ug/Kg		98	51 - 136	
Toluene	40.0	41.8		ug/Kg		104	78 - 124	
N-Propylbenzene	40.0	42.7		ug/Kg		107	80 - 120	
1,2,3-Trichloropropane	40.0	43.0		ug/Kg		108	54 - 135	
1,3,5-Trimethylbenzene	40.0	43.6		ug/Kg		109	68 - 133	
tert-Butylbenzene	40.0	42.9		ug/Kg		107	74 - 133	
1,2,4-Trimethylbenzene	40.0	42.8		ug/Kg		107	80 - 121	
sec-Butylbenzene	40.0	44.1		ug/Kg		110	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		52 - 124
Toluene-d8 (Surr)	98		72 - 127
4-Bromofluorobenzene (Surr)	95		63 - 120
Dibromofluoromethane (Surr)	99		68 - 121

40.0

40.0

40.0

43.4

43.6

35.8

ug/Kg

ug/Kg

ug/Kg

109

109

59 - 145

42 - 150

31 - 148

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-19971/1-A

Matrix: Solid

Methyl tert-butyl ether

Trichlorofluoromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2,4-Trichlorobenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Client Sample ID: Method Blank Prep Type: Total/NA

matrix: cond								Trop Type.	otal/14/4
Analysis Batch: 19977								Prep Batcl	h: 19971
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20	5.0	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Ponzono	ND		5.0	0.68	ua/Ka		11/09/11 04:09	11/09/11 06:19	1

Analyte	Result Qual	itier RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Acetone	ND ND	20	5.0	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Benzene	ND	5.0	0.68	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Bromodichloromethane	ND	5.0	0.56	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Bromoform	ND	5.0	0.44	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Bromomethane	ND	5.0	0.74	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
2-Butanone (MEK)	ND	5.0	0.88	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Carbon disulfide	ND	5.0	0.51	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Carbon tetrachloride	ND	5.0	0.45	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Chlorobenzene	ND	5.0	0.76	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Chloroethane	ND	5.0	1.5	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Chloroform	ND	5.0	0.58	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Chloromethane	ND	5.0	0.85	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Dibromochloromethane	ND	5.0	0.71	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,1-Dichloroethane	ND	5.0	0.58	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,2-Dichloroethane	ND	5.0	0.61	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,1-Dichloroethene	ND	5.0	0.85	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Acetonitrile	ND	100	23	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,2-Dichloropropane	ND	5.0	0.54	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
cis-1,3-Dichloropropene	ND	5.0	0.68	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
trans-1,3-Dichloropropene	ND	5.0	0.60	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Ethylbenzene	ND	5.0	0.64	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
2-Hexanone	ND	5.0	0.69	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Methylene Chloride	1.27 J	5.0	0.67	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.65	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Bromochloromethane	ND	5.0	0.69	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Styrene	ND	5.0	0.71	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.72	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Tetrachloroethene	ND	5.0	0.68	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,1,1-Trichloroethane	ND	5.0	0.49	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,1,2-Trichloroethane	ND	5.0	0.83	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Trichloroethene	ND	5.0	0.66	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Vinyl chloride	ND	5.0	0.47	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Xylenes, Total	ND	15	2.2	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Cyclohexane	ND	5.0	0.37	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,2-Dibromo-3-Chloropropane	ND	5.0	0.75	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
1,2-Dibromoethane (EDB)	ND	5.0	0.86	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Dichlorodifluoromethane	ND	5.0	0.67	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
cis-1,2-Dichloroethene	ND	5.0	0.70	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
trans-1,2-Dichloroethene	ND	5.0	0.60	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Isopropylbenzene	ND	5.0	0.68	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Methyl acetate	ND	5.0	0.90	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
Methylcyclohexane	ND	5.0	0.73	ug/Kg		11/08/11 04:08	11/08/11 06:18	1

11/08/11 06:18

11/08/11 06:18

11/08/11 06:18

11/08/11 06:18

11/08/11 06:18

11/08/11 06:18

11/08/11 06:18

5.0

5.0

5.0

5.0

5.0

5.0

5.0

0.75 ug/Kg

0.92 ug/Kg

1.1 ug/Kg

0.80 ug/Kg

0.66 ug/Kg

0.64 ug/Kg

0.88 ug/Kg

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

11/08/11 04:08

ND

ND

ND

ND

ND

ND

ND

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 180-19971/1-A

Matrix: Solid

Analysis Batch: 19977

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 19971

IVID	IVID							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		5.0	0.73	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.76	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.93	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.67	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.71	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.65	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.78	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.80	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	1.1	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
4.13	J	5.0	1.0	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		100	7.0	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		100	10	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.30	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		200	26	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.69	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.42	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	0.35	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
ND		5.0	1.0	ug/Kg		11/08/11 04:08	11/08/11 06:18	1
	Result	ND N	Result Qualifier RL ND 5.0 ND 100 ND 100 ND 5.0 ND 5.0	Result Qualifier RL MDL ND 5.0 0.73 ND 5.0 0.93 ND 5.0 0.67 ND 5.0 0.67 ND 5.0 0.65 ND 5.0 0.78 ND 5.0 0.80 ND 5.0 1.1 4.13 J 5.0 1.0 ND 100 7.0 ND 100 7.0 ND 5.0 0.30 ND 5.0 0.69 ND 5.0 0.69 ND 5.0 0.42 ND 5.0 0.35	Result Qualifier RL MDL Unit ND 5.0 0.73 ug/Kg ND 5.0 0.76 ug/Kg ND 5.0 0.93 ug/Kg ND 5.0 0.67 ug/Kg ND 5.0 0.65 ug/Kg ND 5.0 0.78 ug/Kg ND 5.0 0.80 ug/Kg ND 5.0 0.80 ug/Kg ND 5.0 1.1 ug/Kg ND 100 7.0 ug/Kg ND 100 7.0 ug/Kg ND 5.0 0.30 ug/Kg ND 5.0 0.69 ug/Kg ND 5.0 0.69 ug/Kg ND 5.0 0.42 ug/Kg ND 5.0 0.35 ug/Kg	Result Qualifier RL MDL Unit D ND 5.0 0.73 ug/Kg ND 5.0 0.76 ug/Kg ND 5.0 0.67 ug/Kg ND 5.0 0.67 ug/Kg ND 5.0 0.65 ug/Kg ND 5.0 0.78 ug/Kg ND 5.0 0.80 ug/Kg ND 5.0 1.1 ug/Kg ND 100 7.0 ug/Kg ND 100 7.0 ug/Kg ND 5.0 0.30 ug/Kg ND 5.0 0.69 ug/Kg ND 5.0 0.69 ug/Kg ND 5.0 0.42 ug/Kg ND 5.0 0.42 ug/Kg ND 5.0 0.42 ug/Kg	Result Qualifier RL MDL Unit D Prepared ND 5.0 0.73 ug/Kg 11/08/11 04:08 ND 5.0 0.76 ug/Kg 11/08/11 04:08 ND 5.0 0.93 ug/Kg 11/08/11 04:08 ND 5.0 0.67 ug/Kg 11/08/11 04:08 ND 5.0 0.71 ug/Kg 11/08/11 04:08 ND 5.0 0.65 ug/Kg 11/08/11 04:08 ND 5.0 0.78 ug/Kg 11/08/11 04:08 ND 5.0 0.80 ug/Kg 11/08/11 04:08 ND 5.0 1.1 ug/Kg 11/08/11 04:08 ND 100 7.0 ug/Kg 11/08/11 04:08 ND 100 7.0 ug/Kg 11/08/11 04:08 ND 5.0 0.30 ug/Kg 11/08/11 04:08 ND 5.0 0.30 ug/Kg 11/08/11 04:08 ND 5.0 0.69 ug/K	Result Qualifier RL MDL Unit D Prepared Analyzed ND 5.0 0.73 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.76 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.93 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.67 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.67 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.65 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.78 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 0.80 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 1.1 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 5.0 1.0 ug/Kg 11/08/11 04:08 11/08/11 06:18 ND 100 7.0 ug/Kg 11/08/11 04:08 11/08/11 06:18

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		52 - 124	11/08/11 04:08	11/08/11 06:18	1
Toluene-d8 (Surr)	100		72 - 127	11/08/11 04:08	11/08/11 06:18	1
4-Bromofluorobenzene (Surr)	101		63 - 120	11/08/11 04:08	11/08/11 06:18	1
Dibromofluoromethane (Surr)	100		68 - 121	11/08/11 04:08	11/08/11 06:18	1

Lab Sample ID: LCS 180-19971/2-A

Matrix: Solid

Analysis Batch: 19977

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 19971

Analysis Batch: 19977							Prep Batch: 19971
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	40.0	62.3	*	ug/Kg		156	20 - 150
Benzene	40.0	38.9		ug/Kg		97	77 - 120
Bromodichloromethane	40.0	40.3		ug/Kg		101	70 - 125
Bromoform	40.0	38.5		ug/Kg		96	53 - 140
Bromomethane	40.0	41.3		ug/Kg		103	25 _ 150
2-Butanone (MEK)	40.0	52.3		ug/Kg		131	35 ₋ 149
Carbon disulfide	40.0	37.5		ug/Kg		94	50 - 127
Carbon tetrachloride	40.0	44.3		ug/Kg		111	69 - 122
Chlorobenzene	40.0	39.7		ug/Kg		99	79 - 120
Chloroethane	40.0	42.4		ug/Kg		106	22 - 150
Chloroform	40.0	41.3		ug/Kg		103	72 - 120
Chloromethane	40.0	41.5		ug/Kg		104	44 - 131
Dibromochloromethane	40.0	42.3		ug/Kg		106	70 - 132
1,1-Dichloroethane	40.0	40.7		ug/Kg		102	66 - 124
1,2-Dichloroethane	40.0	40.6		ug/Kg		101	61 ₋ 127
1,1-Dichloroethene	40.0	43.1		ug/Kg		108	59 - 129
1,2-Dichloropropane	40.0	38.1		ug/Kg		95	72 _ 122
cis-1,3-Dichloropropene	40.0	38.1		ug/Kg		95	73 - 120
trans-1,3-Dichloropropene	40.0	41.0		ug/Kg		103	74 _ 129

Spike

Added

40.0

40.0

LCS LCS

40.0

57.6

Result Qualifier

Unit

ug/Kg

ug/Kg

D

%Rec

100

144

TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-19971/2-A

Matrix: Solid

Analyte

Ethylbenzene

2-Hexanone

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

tert-Butylbenzene

sec-Butylbenzene

Hexachlorobutadiene

n-Butylbenzene

Naphthalene

Analysis Batch: 19977

Client: GAI Consultants

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Limits

78 - 125

32 - 150

Prep Batch: 19971

2-nexamone	40.0	57.0	ug/Ng	144	32 - 130	
Methylene Chloride	40.0	39.9	ug/Kg	100	58 ₋ 127	
4-Methyl-2-pentanone (MIBK)	40.0	45.4	ug/Kg	114	44 - 148	
Bromochloromethane	40.0	41.3	ug/Kg	103	67 _ 126	
Styrene	40.0	40.7	ug/Kg	102	83 - 129	
1,1,2,2-Tetrachloroethane	40.0	41.0	ug/Kg	103	60 _ 139	
Tetrachloroethene	40.0	40.4	ug/Kg	101	78 _ 129	
1,1,1-Trichloroethane	40.0	44.9	ug/Kg	112	67 - 126	
1,1,2-Trichloroethane	40.0	38.0	ug/Kg	95	70 - 128	
Trichloroethene	40.0	38.7	ug/Kg	97	76 _ 119	
Vinyl chloride	40.0	40.8	ug/Kg	102	63 _ 124	
Cyclohexane	40.0	42.0	ug/Kg	105	64 - 130	
1,2-Dibromo-3-Chloropropane	40.0	37.9	ug/Kg	95	35 - 136	
1,2-Dibromoethane (EDB)	40.0	39.4	ug/Kg	99	70 - 131	
Dichlorodifluoromethane	40.0	47.6	ug/Kg	119	25 - 150	
cis-1,2-Dichloroethene	40.0	41.9	ug/Kg	105	80 - 118	
trans-1,2-Dichloroethene	40.0	42.0	ug/Kg	105	77 - 121	
Isopropylbenzene	40.0	41.7	ug/Kg	104	70 - 133	
Methyl acetate	40.0	39.6	ug/Kg	99	27 - 142	
Methylcyclohexane	40.0	42.1	ug/Kg	105	66 - 135	
Methyl tert-butyl ether	40.0	42.0	ug/Kg	105	48 - 132	
Trichlorofluoromethane	40.0	30.4	ug/Kg	76	20 - 150	
1,1,2-Trichloro-1,2,2-trifluoroetha	40.0	36.7	ug/Kg	92	55 - 130	
ne						
1,2-Dichlorobenzene	40.0	39.5	ug/Kg	99	71 - 124	
1,3-Dichlorobenzene	40.0	39.1	ug/Kg	98	75 _ 118	
1,4-Dichlorobenzene	40.0	38.5	ug/Kg	96	77 - 116	
1,2,4-Trichlorobenzene	40.0	41.2	ug/Kg	103	51 - 136	
Toluene	40.0	39.1	ug/Kg	98	78 - 124	
N-Propylbenzene	40.0	39.1	ug/Kg	98	80 - 120	

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

42.2

40.5

39.0

40.4

40.5

42.0

43.7

37.1

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

106

101

97

101

101

105

109

54 - 135

68 - 133

74 - 133

80 - 121

70 - 130

59 - 145

42 - 150

31 - 148

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		52 - 124
Toluene-d8 (Surr)	96		72 - 127
4-Bromofluorobenzene (Surr)	99		63 - 120
Dibromofluoromethane (Surr)	104		68 - 121

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-20106/1-A

Matrix: Solid

Analysis Batch: 20110

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA
Prep Batch: 20106

	MB MB							
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acetone	ND	20	5.0	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Benzene	ND	5.0	0.68	ug/Kg		11/09/11 05:26	11/09/11 07:48	•
Bromodichloromethane	ND	5.0	0.56	ug/Kg		11/09/11 05:26	11/09/11 07:48	•
Bromoform	ND	5.0	0.44	ug/Kg		11/09/11 05:26	11/09/11 07:48	•
Bromomethane	ND	5.0	0.74	ug/Kg		11/09/11 05:26	11/09/11 07:48	
2-Butanone (MEK)	ND	5.0	0.88	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Carbon disulfide	ND	5.0	0.51	ug/Kg		11/09/11 05:26	11/09/11 07:48	· · · · · · · · · ·
Carbon tetrachloride	ND	5.0	0.45	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Chlorobenzene	ND	5.0	0.76	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Chloroethane	ND	5.0	1.5	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Chloroform	ND	5.0	0.58	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Chloromethane	ND	5.0	0.85	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Dibromochloromethane	ND	5.0	0.71	ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1-Dichloroethane	ND	5.0	0.58	ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,2-Dichloroethane	ND	5.0	0.61	ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1-Dichloroethene	ND	5.0	0.85	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Acetonitrile	ND	100	23	ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,2-Dichloropropane	ND	5.0	0.54	ug/Kg		11/09/11 05:26	11/09/11 07:48	
cis-1,3-Dichloropropene	ND	5.0	0.68	ug/Kg		11/09/11 05:26	11/09/11 07:48	<i>.</i>
trans-1,3-Dichloropropene	ND	5.0	0.60	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Ethylbenzene	ND	5.0	0.64	ug/Kg		11/09/11 05:26	11/09/11 07:48	
2-Hexanone	ND	5.0	0.69	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Methylene Chloride	1.28 J	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Bromochloromethane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Styrene	ND	5.0	0.71	ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1,2,2-Tetrachloroethane	ND	5.0	0.72	ug/Kg		11/09/11 05:26	11/09/11 07:48	
Tetrachloroethene	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1,1-Trichloroethane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1,2-Trichloroethane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Trichloroethene	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Vinyl chloride	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Xylenes, Total	ND	15		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Cyclohexane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Dichlorodifluoromethane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
cis-1,2-Dichloroethene	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
trans-1,2-Dichloroethene	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Isopropylbenzene	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Methyl acetate	ND ND	5.0		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 07:48	
Methylcyclohexane	ND	5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
Methyl tert-butyl ether	ND	5.0		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 07:48	
Trichlorofluoromethane	ND ND	5.0		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,2-Dichlorobenzene	ND ND			ug/Kg ug/Kg				
		5.0				11/09/11 05:26	11/09/11 07:48	
1,3-Dichlorobenzene	ND ND	5.0 5.0		ug/Kg		11/09/11 05:26	11/09/11 07:48	
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	ND ND	5.0 5.0		ug/Kg ug/Kg		11/09/11 05:26	11/09/11 07:48 11/09/11 07:48	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-20106/1-A

Analysis Batch: 20110

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20106

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	2.19	J	5.0	0.73	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
N-Propylbenzene	ND		5.0	0.76	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
1,2,3-Trichloropropane	ND		5.0	0.93	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
1,3,5-Trimethylbenzene	ND		5.0	0.67	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
tert-Butylbenzene	ND		5.0	0.71	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
1,2,4-Trimethylbenzene	ND		5.0	0.65	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
sec-Butylbenzene	ND		5.0	0.78	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
n-Butylbenzene	ND		5.0	0.80	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Hexachlorobutadiene	ND		5.0	1.1	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Naphthalene	1.22	J	5.0	1.0	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Acrolein	ND		100	7.0	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Acrylonitrile	ND		100	10	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Methacrylonitrile	ND		5.0	0.30	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Isobutyl alcohol	ND		200	26	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Methyl methacrylate	ND		5.0	0.69	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Ethyl methacrylate	ND		5.0	0.42	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Vinyl acetate	ND		5.0	0.35	ug/Kg		11/09/11 05:26	11/09/11 07:48	1
Hexane	ND		5.0	1.0	ug/Kg		11/09/11 05:26	11/09/11 07:48	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		52 - 124	11/09/11 05:26	11/09/11 07:48	1
Toluene-d8 (Surr)	99		72 - 127	11/09/11 05:26	11/09/11 07:48	1
4-Bromofluorobenzene (Surr)	99		63 - 120	11/09/11 05:26	11/09/11 07:48	1
Dibromofluoromethane (Surr)	101		68 - 121	11/09/11 05:26	11/09/11 07:48	1

Lab Sample ID: LCS 180-20106/2-A

Matrix: Solid

Analysis Batch: 20110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 20106

					i icp Dateii. 20100	
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
40.0	45.8		ug/Kg		114	20 - 150
40.0	40.5		ug/Kg		101	77 - 120
40.0	41.4		ug/Kg		104	70 - 125
40.0	39.4		ug/Kg		98	53 _ 140
40.0	37.5		ug/Kg		94	25 _ 150
40.0	41.4		ug/Kg		104	35 _ 149
40.0	35.1		ug/Kg		88	50 _ 127
40.0	45.2		ug/Kg		113	69 - 122
40.0	39.4		ug/Kg		99	79 - 120
40.0	41.9		ug/Kg		105	22 - 150
40.0	41.1		ug/Kg		103	72 - 120
40.0	36.7		ug/Kg		92	44 - 131
40.0	43.4		ug/Kg		109	70 - 132
40.0	40.5		ug/Kg		101	66 - 124
40.0	41.6		ug/Kg		104	61 - 127
40.0	41.4		ug/Kg		104	59 _ 129
40.0	39.8		ug/Kg		99	72 - 122
40.0	40.4		ug/Kg		101	73 - 120
40.0	41.3		ug/Kg		103	74 - 129
	Added 40.0	Added Result 40.0 45.8 40.0 40.5 40.0 39.4 40.0 37.5 40.0 41.4 40.0 35.1 40.0 45.2 40.0 39.4 40.0 41.9 40.0 41.1 40.0 36.7 40.0 43.4 40.0 40.5 40.0 41.6 40.0 39.8 40.0 40.4	Added Result Qualifier 40.0 45.8 40.0 40.5 40.0 39.4 40.0 37.5 40.0 41.4 40.0 35.1 40.0 45.2 40.0 39.4 40.0 41.9 40.0 41.1 40.0 36.7 40.0 43.4 40.0 40.5 40.0 41.6 40.0 39.8 40.0 40.4	Added Result Qualifier Unit 40.0 45.8 ug/Kg 40.0 40.5 ug/Kg 40.0 41.4 ug/Kg 40.0 39.4 ug/Kg 40.0 37.5 ug/Kg 40.0 41.4 ug/Kg 40.0 35.1 ug/Kg 40.0 45.2 ug/Kg 40.0 39.4 ug/Kg 40.0 41.9 ug/Kg 40.0 41.1 ug/Kg 40.0 43.4 ug/Kg 40.0 43.4 ug/Kg 40.0 40.5 ug/Kg 40.0 41.6 ug/Kg 40.0 41.4 ug/Kg 40.0 39.8 ug/Kg 40.0 40.4 ug/Kg	Added Result Qualifier Unit D 40.0 45.8 ug/Kg 40.0 40.5 ug/Kg 40.0 41.4 ug/Kg 40.0 37.5 ug/Kg 40.0 41.4 ug/Kg 40.0 35.1 ug/Kg 40.0 45.2 ug/Kg 40.0 39.4 ug/Kg 40.0 41.9 ug/Kg 40.0 41.1 ug/Kg 40.0 36.7 ug/Kg 40.0 43.4 ug/Kg 40.0 40.5 ug/Kg 40.0 41.6 ug/Kg 40.0 39.8 ug/Kg 40.0 40.4 ug/Kg	Added Result 40.0 Qualifier 45.8 Unit ug/Kg D %Rec 40.0 45.8 ug/Kg 114 40.0 40.5 ug/Kg 101 40.0 41.4 ug/Kg 98 40.0 37.5 ug/Kg 94 40.0 41.4 ug/Kg 104 40.0 35.1 ug/Kg 88 40.0 45.2 ug/Kg 99 40.0 39.4 ug/Kg 105 40.0 41.9 ug/Kg 105 40.0 41.1 ug/Kg 103 40.0 36.7 ug/Kg 103 40.0 43.4 ug/Kg 109 40.0 40.5 ug/Kg 101 40.0 41.6 ug/Kg 104 40.0 39.8 ug/Kg 99 40.0 40.4 ug/Kg 104

Spike

LCS LCS

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20106/2-A

Matrix: Solid

Analysis Batch: 20110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20106

	Spike LC		LUS	70Rec.		
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Ethylbenzene	40.0	40.5	ug/Kg	101	78 - 125	
2-Hexanone	40.0	44.0	ug/Kg	110	32 _ 150	
Methylene Chloride	40.0	40.1	ug/Kg	100	58 - 127	
4-Methyl-2-pentanone (MIBK)	40.0	41.7	ug/Kg	104	44 - 148	
Bromochloromethane	40.0	41.6	ug/Kg	104	67 - 126	
Styrene	40.0	41.3	ug/Kg	103	83 - 129	
1,1,2,2-Tetrachloroethane	40.0	42.7	ug/Kg	107	60 - 139	
Tetrachloroethene	40.0	40.4	ug/Kg	101	78 - 129	
1,1,1-Trichloroethane	40.0	46.0	ug/Kg	115	67 - 126	
1,1,2-Trichloroethane	40.0	38.3	ug/Kg	96	70 - 128	
Trichloroethene	40.0	41.5	ug/Kg	104	76 ₋ 119	
Vinyl chloride	40.0	41.3	ug/Kg	103	63 - 124	
Cyclohexane	40.0	41.4	ug/Kg	104	64 - 130	
1,2-Dibromo-3-Chloropropane	40.0	38.2	ug/Kg	95	35 - 136	
1,2-Dibromoethane (EDB)	40.0	39.8	ug/Kg	99	70 - 131	
Dichlorodifluoromethane	40.0	34.5	ug/Kg	86	25 - 150	
cis-1,2-Dichloroethene	40.0	42.0	ug/Kg	105	80 - 118	
trans-1,2-Dichloroethene	40.0	42.7	ug/Kg	107	77 - 121	
Isopropylbenzene	40.0	41.9	ug/Kg	105	70 - 133	
Methyl acetate	40.0	39.5	ug/Kg	99	27 _ 142	
Methylcyclohexane	40.0	40.6	ug/Kg	101	66 - 135	
Methyl tert-butyl ether	40.0	41.3	ug/Kg	103	48 - 132	
Trichlorofluoromethane	40.0	38.9	ug/Kg	97	20 - 150	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	40.0	28.5	ug/Kg	71	55 _ 130	
1,2-Dichlorobenzene	40.0	40.0	ug/Kg	100	71 - 124	
1,3-Dichlorobenzene	40.0	39.9	ug/Kg	100	75 ₋ 118	
1,4-Dichlorobenzene	40.0	39.2	ug/Kg	98	77 - 116	
1,2,4-Trichlorobenzene	40.0	39.9	ug/Kg	100	51 ₋ 136	
Toluene	40.0	41.2	ug/Kg	103	78 ₋ 124	
N-Propylbenzene	40.0	40.5	ug/Kg	101	80 - 120	
1,2,3-Trichloropropane	40.0	40.8	ug/Kg	102	54 - 135	
1,3,5-Trimethylbenzene	40.0	40.5	ug/Kg	101	68 - 133	
tert-Butylbenzene	40.0	40.3	ug/Kg	101	74 - 133	
1,2,4-Trimethylbenzene	40.0	40.2	ug/Kg	100	80 - 121	
sec-Butylbenzene	40.0	41.9	ug/Kg	105	70 - 130	
n-Butylbenzene	40.0	42.0	ug/Kg	105	59 - 145	
Hexachlorobutadiene						
	40.0	43.1	ug/Kg	108	42 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		52 - 124
Toluene-d8 (Surr)	93		72 - 127
4-Bromofluorobenzene (Surr)	97		63 - 120
Dibromofluoromethane (Surr)	90		68 121

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-21046/1-A

Matrix: Solid

Client Sample ID: Method Blank **Prep Type: Total/NA**

Pren Batch: 21046

Analysis Batch: 21048	MB MB						Prep Batch	
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND —		5.0	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Benzene	ND	5.0	0.68	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Bromodichloromethane	ND	5.0	0.56	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Bromoform	ND	5.0	0.44	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Bromomethane	ND	5.0	0.74	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
2-Butanone (MEK)	ND	5.0	0.88	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Carbon disulfide	ND	5.0	0.51	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Carbon tetrachloride	ND	5.0	0.45	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Chlorobenzene	ND	5.0	0.76	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Chloroethane	ND	5.0	1.5	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Chloroform	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Chloromethane	ND	5.0	0.85	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Dibromochloromethane	ND	5.0	0.71			11/17/11 04:49	11/17/11 07:04	1
1,1-Dichloroethane	ND	5.0	0.58			11/17/11 04:49	11/17/11 07:04	1
1,2-Dichloroethane	ND	5.0	0.61			11/17/11 04:49	11/17/11 07:04	1
1,1-Dichloroethene	ND	5.0	0.85			11/17/11 04:49	11/17/11 07:04	₋ 1
Acetonitrile	ND	100	23			11/17/11 04:49	11/17/11 07:04	1
1,2-Dichloropropane	ND	5.0	0.54			11/17/11 04:49	11/17/11 07:04	1
cis-1,3-Dichloropropene	ND	5.0	0.68	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
trans-1,3-Dichloropropene	ND	5.0	0.60	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Ethylbenzene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	
2-Hexanone	ND	5.0	0.69			11/17/11 04:49	11/17/11 07:04	1
Methylene Chloride	2.59 J	5.0	0.67			11/17/11 04:49	11/17/11 07:04	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Bromochloromethane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Styrene	ND	5.0	0.71			11/17/11 04:49	11/17/11 07:04	1
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	
Tetrachloroethene	ND	5.0	0.68			11/17/11 04:49	11/17/11 07:04	
1,1,1-Trichloroethane	ND	5.0	0.49			11/17/11 04:49	11/17/11 07:04	
1,1,2-Trichloroethane	ND	5.0	0.83			11/17/11 04:49	11/17/11 07:04	
Trichloroethene	ND	5.0	0.66			11/17/11 04:49	11/17/11 07:04	,
Vinyl chloride	ND	5.0	0.47			11/17/11 04:49	11/17/11 07:04	1
Xylenes, Total	ND	15		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Cyclohexane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	
Dichlorodifluoromethane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	,
cis-1,2-Dichloroethene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Isopropylbenzene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Methyl acetate	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Methylcyclohexane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Methyl tert-butyl ether	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Trichlorofluoromethane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	,
1,2-Dichlorobenzene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	,
1,3-Dichlorobenzene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,4-Dichlorobenzene	ND	5.0		ug/Kg ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg		11/17/11 04:49	11/17/11 07:04	· · · · · · · · · · · · · · · · · · ·

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-21046/1-A

Matrix: Solid

Analysis Batch: 21048

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 21046

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		5.0	0.73	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
N-Propylbenzene	ND		5.0	0.76	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,2,3-Trichloropropane	ND		5.0	0.93	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,3,5-Trimethylbenzene	ND		5.0	0.67	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
tert-Butylbenzene	ND		5.0	0.71	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
1,2,4-Trimethylbenzene	ND		5.0	0.65	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
sec-Butylbenzene	ND		5.0	0.78	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
n-Butylbenzene	ND		5.0	0.80	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Hexachlorobutadiene	ND		5.0	1.1	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Naphthalene	2.31	J	5.0	1.0	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Acrolein	ND		100	7.0	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Acrylonitrile	ND		100	10	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Methacrylonitrile	ND		5.0	0.30	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Isobutyl alcohol	ND		200	26	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Methyl methacrylate	ND		5.0	0.69	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Ethyl methacrylate	ND		5.0	0.42	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Vinyl acetate	ND		5.0	0.35	ug/Kg		11/17/11 04:49	11/17/11 07:04	1
Hexane	ND		5.0	1.0	ug/Kg		11/17/11 04:49	11/17/11 07:04	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	52 - 124	11/17/11 04:49	11/17/11 07:04	1
Toluene-d8 (Surr)	100	72 - 127	11/17/11 04:49	11/17/11 07:04	1
4-Bromofluorobenzene (Surr)	95	63 - 120	11/17/11 04:49	11/17/11 07:04	1
Dibromofluoromethane (Surr)	98	68 - 121	11/17/11 04:49	11/17/11 07:04	1

Lab Sample ID: LCS 180-21046/2-A

Matrix: Solid

Analysis Batch: 21048

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21046

Analysis Batch: 21048							Prep Batch: 21046
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	40.0	31.3		ug/Kg		78	20 - 150
Benzene	40.0	40.0		ug/Kg		100	77 - 120
Bromodichloromethane	40.0	40.7		ug/Kg		102	70 - 125
Bromoform	40.0	37.0		ug/Kg		92	53 - 140
Bromomethane	40.0	36.4		ug/Kg		91	25 _ 150
2-Butanone (MEK)	40.0	34.6		ug/Kg		87	35 - 149
Carbon disulfide	40.0	36.4		ug/Kg		91	50 _ 127
Carbon tetrachloride	40.0	44.8		ug/Kg		112	69 - 122
Chlorobenzene	40.0	41.3		ug/Kg		103	79 - 120
Chloroethane	40.0	36.3		ug/Kg		91	22 - 150
Chloroform	40.0	40.3		ug/Kg		101	72 - 120
Chloromethane	40.0	36.7		ug/Kg		92	44 - 131
Dibromochloromethane	40.0	43.4		ug/Kg		108	70 - 132
1,1-Dichloroethane	40.0	39.6		ug/Kg		99	66 - 124
1,2-Dichloroethane	40.0	39.6		ug/Kg		99	61 - 127
1,1-Dichloroethene	40.0	41.7		ug/Kg		104	59 _ 129
1,2-Dichloropropane	40.0	38.9		ug/Kg		97	72 - 122
cis-1,3-Dichloropropene	40.0	39.9		ug/Kg		100	73 - 120
trans-1,3-Dichloropropene	40.0	41.6		ug/Kg		104	74 ₋ 129

Spike

LCS LCS

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-21046/2-A

Matrix: Solid

Analysis Batch: 21048

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21046

	Opino				701100.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Ethylbenzene	40.0	41.7	ug/Kg	104	78 - 125	
2-Hexanone	40.0	38.9	ug/Kg	97	32 _ 150	
Methylene Chloride	40.0	41.2	ug/Kg	103	58 ₋ 127	
4-Methyl-2-pentanone (MIBK)	40.0	41.8	ug/Kg	104	44 - 148	
Bromochloromethane	40.0	41.2	ug/Kg	103	67 - 126	
Styrene	40.0	41.5	ug/Kg	104	83 - 129	
1,1,2,2-Tetrachloroethane	40.0	40.6	ug/Kg	102	60 - 139	
Tetrachloroethene	40.0	42.1	ug/Kg	105	78 ₋ 129	
1,1,1-Trichloroethane	40.0	44.0	ug/Kg	110	67 - 126	
1,1,2-Trichloroethane	40.0	39.8	ug/Kg	99	70 - 128	
Trichloroethene	40.0	39.9	ug/Kg	100	76 ₋ 119	
Vinyl chloride	40.0	37.3	ug/Kg	93	63 - 124	
Cyclohexane	40.0	42.9	ug/Kg	107	64 - 130	
1,2-Dibromo-3-Chloropropane	40.0	34.8	ug/Kg	87	35 - 136	
1,2-Dibromoethane (EDB)	40.0	40.0	ug/Kg	100	70 - 131	
Dichlorodifluoromethane	40.0	36.1	ug/Kg	90	25 - 150	
cis-1,2-Dichloroethene	40.0	41.1	ug/Kg	103	80 - 118	
trans-1,2-Dichloroethene	40.0	42.6	ug/Kg	106	77 - 121	
Isopropylbenzene	40.0	42.5	ug/Kg	106	70 - 133	
Methyl acetate	40.0	37.2	ug/Kg	93	27 _ 142	
Methylcyclohexane	40.0	40.5	ug/Kg	101	66 - 135	
Methyl tert-butyl ether	40.0	40.5	ug/Kg	101	48 - 132	
Trichlorofluoromethane	40.0	43.6	ug/Kg	109	20 - 150	
1,1,2-Trichloro-1,2,2-trifluoroetha	40.0	45.6	ug/Kg	114	55 ₋ 130	
1,2-Dichlorobenzene	40.0	40.5	ug/Kg	101	71 - 124	
1,3-Dichlorobenzene	40.0	40.6	ug/Kg	101	75 ₋ 118	
1,4-Dichlorobenzene	40.0	39.7	ug/Kg	99	77 - 116	
1,2,4-Trichlorobenzene	40.0	35.2	ug/Kg	88	51 ₋ 136	
Toluene	40.0	41.4	ug/Kg	104	78 ₋ 124	
N-Propylbenzene	40.0	42.8	ug/Kg	107	80 - 120	
1,2,3-Trichloropropane	40.0	42.4	ug/Kg	106	54 ₋ 135	
1,3,5-Trimethylbenzene	40.0	44.1	ug/Kg	110	68 - 133	
tert-Butylbenzene	40.0	42.5	ug/Kg	106	74 - 133	
1,2,4-Trimethylbenzene	40.0	42.4	ug/Kg	106	80 - 121	
sec-Butylbenzene	40.0	43.6	ug/Kg	109	70 - 130	
n-Butylbenzene	40.0	42.9	ug/Kg	107	59 - 145	
Hexachlorobutadiene	40.0	39.7	ug/Kg	99	42 - 150	
Naphthalene	40.0	31.6	ug/Kg	79	31 - 148	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		52 - 124
Toluene-d8 (Surr)	99		72 - 127
4-Bromofluorobenzene (Surr)	94		63 - 120
Dibromofluoromethane (Surr)	05		68 121

TestAmerica Pittsburgh 12/14/2011

Page 107 of 204

RL

5.0

MDL Unit

2.5 ug/L

D

Prepared

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

ND

Lab Sample ID: MB 180-21486/4

Matrix: Water

Analyte

Acetone

Methyl acetate

Methylcyclohexane

Methyl tert-butyl ether

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Chloromethane

1,2,4-Trichlorobenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Analysis Batch: 21486

Client Sample ID: Method Blank

Analyzed

11/21/11 11:14

Prep Type: Total/NA

Acetone	ND	5.0	2.5 ug/L	11/21/11 11:14	
Benzene	ND	1.0	0.11 ug/L	11/21/11 11:14	1
Bromodichloromethane	ND	1.0	0.13 ug/L	11/21/11 11:14	1
Bromoform	ND	1.0	0.19 ug/L	11/21/11 11:14	1
Bromomethane	ND	1.0	0.31 ug/L	11/21/11 11:14	1
2-Butanone (MEK)	ND	5.0	0.55 ug/L	11/21/11 11:14	1
Carbon disulfide	ND	1.0	0.21 ug/L	11/21/11 11:14	1
Carbon tetrachloride	ND	1.0	0.14 ug/L	11/21/11 11:14	1
Chlorobenzene	ND	1.0	0.14 ug/L	11/21/11 11:14	1
Chloroethane	ND	1.0	0.21 ug/L	11/21/11 11:14	1
Chloroform	ND	1.0	0.17 ug/L	11/21/11 11:14	1
Dibromochloromethane	ND	1.0	0.14 ug/L	11/21/11 11:14	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.14 ug/L	11/21/11 11:14	1
1,2-Dibromoethane (EDB)	ND	1.0	0.18 ug/L	11/21/11 11:14	1
1,1-Dichloroethane	ND	1.0	0.12 ug/L	11/21/11 11:14	1
1,2-Dichloroethane	ND	1.0	0.21 ug/L	11/21/11 11:14	1
1,1-Dichloroethene	ND	1.0	0.30 ug/L	11/21/11 11:14	1
trans-1,2-Dichloroethene	ND	1.0	0.17 ug/L	11/21/11 11:14	1
1,2-Dichloropropane	ND	1.0	0.095 ug/L	11/21/11 11:14	1
cis-1,3-Dichloropropene	ND	1.0	0.19 ug/L	11/21/11 11:14	1
trans-1,3-Dichloropropene	ND	1.0	0.15 ug/L	11/21/11 11:14	1
Ethylbenzene	ND	1.0	0.23 ug/L	11/21/11 11:14	1
2-Hexanone	ND	5.0	0.16 ug/L	11/21/11 11:14	1
Methylene Chloride	ND	1.0	0.15 ug/L	11/21/11 11:14	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.53 ug/L	11/21/11 11:14	1
Styrene	ND	1.0	0.097 ug/L	11/21/11 11:14	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.20 ug/L	11/21/11 11:14	1
Tetrachloroethene	ND	1.0	0.15 ug/L	11/21/11 11:14	1
Toluene	ND	1.0	0.15 ug/L	11/21/11 11:14	1
1,1,1-Trichloroethane	ND	1.0	0.29 ug/L	11/21/11 11:14	1
1,1,2-Trichloroethane	ND	1.0	0.20 ug/L	11/21/11 11:14	1
Trichloroethene	ND	1.0	0.14 ug/L	11/21/11 11:14	1
Trichlorofluoromethane	ND	1.0	0.20 ug/L	11/21/11 11:14	1
Vinyl chloride	ND	1.0	0.23 ug/L	11/21/11 11:14	1
Xylenes, Total	ND	3.0	0.49 ug/L	11/21/11 11:14	1
Cyclohexane	ND	1.0	0.25 ug/L	11/21/11 11:14	1
cis-1,2-Dichloroethene	ND	1.0	0.24 ug/L	11/21/11 11:14	1
Dichlorodifluoromethane	ND	1.0	0.19 ug/L	11/21/11 11:14	1
Isopropylbenzene	ND	1.0	0.16 ug/L	11/21/11 11:14	1

Dil Fac

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

11/21/11 11:14

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.14 ug/L

0.26 ug/L

0.18 ug/L

0.32 ug/L

0.15 ug/L

0.11 ug/L

0.21 ug/L

0.27 ug/L

0.28 ug/L

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-21486/4

Matrix: Water

Analysis Batch: 21486

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB					
Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	96	64 - 135		11/21/11 11:14	1	
Toluene-d8 (Surr)	91	71 - 118		11/21/11 11:14	1	
4-Bromofluorobenzene (Surr)	92	70 - 118		11/21/11 11:14	1	
Dibromofluoromethane (Surr)	97	70 - 128		11/21/11 11:14	1	

Lab Sample ID: LCS 180-21486/5

Matrix: Water

Analysis Batch: 21486

1,2-Dibromoethane (EDB)

trans-1,3-Dichloropropene

Ethylbenzene

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

74 - 123

65 - 125

72 - 126

84

86

85

LCS LCS Spike %Rec. Added Qualifier Limits Analyte Result Unit %Rec Acetone 10.0 9.89 ug/L 99 22 _ 150 Benzene 10.0 8.67 ug/L 87 80 - 120 Bromodichloromethane 10.0 8.71 ug/L 87 66 - 130 Bromoform 10.0 9.03 ug/L 90 46 - 150 10.0 8.01 33 - 150 Bromomethane 80 ug/L 2-Butanone (MEK) 10.0 10.4 ug/L 104 39 - 138 ug/L Carbon disulfide 10.0 7.77 78 54 - 132

Carbon tetrachloride 10.0 8.47 ug/L 85 55 - 150 Chlorobenzene 10.0 8.58 ug/L 86 80 - 120 Chloroethane 10.0 7.85 79 36 - 142 ug/L Chloroform 72 - 127 10.0 8.65 ug/L Dibromochloromethane 10.0 8.92 89 60 - 140 ug/L 1,2-Dibromo-3-Chloropropane 10.0 8.65 87 37 - 133 ug/L

10.0

8.42

8.65

8.54

ug/L

ug/L

ug/L

1,1-Dichloroethane 10.0 8.33 ug/L 83 73 - 126 1.2-Dichloroethane 10.0 8.39 ug/L 84 68 - 132 1,1-Dichloroethene 10.0 8.12 ug/L 81 65 - 136 trans-1,2-Dichloroethene 10.0 8.62 86 73 - 126 ug/L 76 - 124 1,2-Dichloropropane 10.0 8.85 ug/L 88 cis-1,3-Dichloropropene 10.0 8.67 87 66 - 120 ug/L

10.0

10.0

2-Hexanone 10.0 8 78 ug/L 88 25 - 132 Methylene Chloride 10.0 7.49 ug/L 75 63 - 129 45 - 145 4-Methyl-2-pentanone (MIBK) 10.0 8.42 ug/L 84 10.0 8.73 87 71 - 127 ug/L

1,1,2,2-Tetrachloroethane 10.0 8.80 88 62 - 125ug/L Tetrachloroethene 10.0 8.57 86 70 - 135 ug/L 10.0 8.74 87 80 - 123 Toluene ug/L 1,1,1-Trichloroethane 10.0 8.40 ug/L 84 63 - 133 1,1,2-Trichloroethane 10.0 8.75 ug/L 88 77 - 127

Trichloroethene 73 - 120 10.0 8.68 ug/L 87 Trichlorofluoromethane 10.0 7.63 ug/L 76 44 - 150 10.0 Vinyl chloride 8.07 53 - 138 ug/L 81 Xylenes, Total 30.0 26.4 88 76 - 128 ug/L 7 91 79 Cyclohexane 10.0 ug/L 45 - 142

cis-1,2-Dichloroethene 10.0 8.39 ug/L 84 70 - 120 Dichlorodifluoromethane 10.0 4.82 48 13 - 150 ug/L Isopropylbenzene 10.0 8.62 ug/L 86 58 - 130

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-21486/5

Matrix: Water

Analysis Batch: 21486

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate	10.0	8.51		ug/L		85	47 - 142	
Methylcyclohexane	10.0	8.18		ug/L		82	45 - 145	
Methyl tert-butyl ether	10.0	8.42		ug/L		84	64 - 123	
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	8.19		ug/L		82	46 - 148	
ne								
1,2-Dichlorobenzene	10.0	8.18		ug/L		82	77 - 120	
1,3-Dichlorobenzene	10.0	8.12		ug/L		81	76 - 120	
1,4-Dichlorobenzene	10.0	8.24		ug/L		82	77 - 120	
1,2,4-Trichlorobenzene	10.0	8.06		ug/L		81	60 _ 127	
Chloromethane	10.0	7.02		ug/L		70	50 - 139	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		64 - 135
Toluene-d8 (Surr)	88		71 - 118
4-Bromofluorobenzene (Surr)	90		70 - 118
Dibromofluoromethane (Surr)	89		70 - 128

Lab Sample ID: LCSD 180-21486/6

Matrix: Water

Analysis Batch: 21486

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	10.0	10.7		ug/L		107	22 - 150	8	35
Benzene	10.0	9.74		ug/L		97	80 - 120	12	32
Bromodichloromethane	10.0	9.92		ug/L		99	66 - 130	13	35
Bromoform	10.0	9.42		ug/L		94	46 - 150	4	35
Bromomethane	10.0	8.97		ug/L		90	33 - 150	11	35
2-Butanone (MEK)	10.0	10.9		ug/L		109	39 - 138	5	35
Carbon disulfide	10.0	8.45		ug/L		84	54 - 132	8	35
Carbon tetrachloride	10.0	9.45		ug/L		94	55 - 150	11	35
Chlorobenzene	10.0	9.42		ug/L		94	80 - 120	9	29
Chloroethane	10.0	8.99		ug/L		90	36 - 142	14	35
Chloroform	10.0	9.52		ug/L		95	72 - 127	10	35
Dibromochloromethane	10.0	9.43		ug/L		94	60 - 140	5	35
1,2-Dibromo-3-Chloropropane	10.0	8.39		ug/L		84	37 - 133	3	35
1,2-Dibromoethane (EDB)	10.0	9.19		ug/L		92	74 - 123	9	35
1,1-Dichloroethane	10.0	9.32		ug/L		93	73 - 126	11	35
1,2-Dichloroethane	10.0	9.50		ug/L		95	68 - 132	12	32
1,1-Dichloroethene	10.0	9.00		ug/L		90	65 - 136	10	35
trans-1,2-Dichloroethene	10.0	9.33		ug/L		93	73 - 126	8	35
1,2-Dichloropropane	10.0	9.69		ug/L		97	76 - 124	9	34
cis-1,3-Dichloropropene	10.0	9.91		ug/L		99	66 - 120	13	35
trans-1,3-Dichloropropene	10.0	9.42		ug/L		94	65 - 125	9	35
Ethylbenzene	10.0	9.49		ug/L		95	72 - 126	11	33
2-Hexanone	10.0	9.32		ug/L		93	25 - 132	6	35
Methylene Chloride	10.0	8.49		ug/L		85	63 - 129	13	35
4-Methyl-2-pentanone (MIBK)	10.0	9.10		ug/L		91	45 - 145	8	35
Styrene	10.0	9.72		ug/L		97	71 - 127	11	34
1,1,2,2-Tetrachloroethane	10.0	8.94		ug/L		89	62 _ 125	2	35
Tetrachloroethene	10.0	9.44		ug/L		94	70 - 135	10	35

TestAmerica Pittsburgh 12/14/2011

TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-21486/6

Matrix: Water

Client: GAI Consultants

Analysis Batch: 21486

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	10.0	9.56		ug/L		96	80 - 123	9	35
1,1,1-Trichloroethane	10.0	9.49		ug/L		95	63 _ 133	12	35
1,1,2-Trichloroethane	10.0	9.74		ug/L		97	77 - 127	11	35
Trichloroethene	10.0	9.36		ug/L		94	73 - 120	8	35
Trichlorofluoromethane	10.0	8.41		ug/L		84	44 - 150	10	35
Vinyl chloride	10.0	8.61		ug/L		86	53 - 138	6	35
Xylenes, Total	30.0	29.0		ug/L		97	76 - 128	9	32
Cyclohexane	10.0	9.01		ug/L		90	45 - 142	13	35
cis-1,2-Dichloroethene	10.0	9.52		ug/L		95	70 - 120	13	35
Dichlorodifluoromethane	10.0	5.32		ug/L		53	13 _ 150	10	35
Isopropylbenzene	10.0	9.57		ug/L		96	58 ₋ 130	10	35
Methyl acetate	10.0	9.08		ug/L		91	47 - 142	6	35
Methylcyclohexane	10.0	9.19		ug/L		92	45 - 145	12	35
Methyl tert-butyl ether	10.0	9.28		ug/L		93	64 - 123	10	35
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	8.83		ug/L		88	46 - 148	8	35
ne									
1,2-Dichlorobenzene	10.0	8.80		ug/L		88	77 - 120	7	24
1,3-Dichlorobenzene	10.0	8.64		ug/L		86	76 - 120	6	24
1,4-Dichlorobenzene	10.0	8.76		ug/L		88	77 - 120	6	24
1,2,4-Trichlorobenzene	10.0	8.83		ug/L		88	60 - 127	9	35
Chloromethane	10.0	7.90		ug/L		79	50 - 139	12	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93	64 - 135
Toluene-d8 (Surr)	91	71 - 118
4-Bromofluorobenzene (Surr)	93	70 - 118
Dibromofluoromethane (Surr)	95	70 - 128

Lab Sample ID: MB 180-21590/4

Matrix: Water

Analysis Batch: 21590

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton. 21000													
	MB	MB											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Acetone	ND		5.0	2.5	ug/L			11/22/11 08:10	1				
Benzene	ND		1.0	0.11	ug/L			11/22/11 08:10	1				
Bromodichloromethane	ND		1.0	0.13	ug/L			11/22/11 08:10	1				
Bromoform	ND		1.0	0.19	ug/L			11/22/11 08:10	1				
Bromomethane	ND		1.0	0.31	ug/L			11/22/11 08:10	1				
2-Butanone (MEK)	ND		5.0	0.55	ug/L			11/22/11 08:10	1				
Carbon disulfide	ND		1.0	0.21	ug/L			11/22/11 08:10	1				
Carbon tetrachloride	ND		1.0	0.14	ug/L			11/22/11 08:10	1				
Chlorobenzene	ND		1.0	0.14	ug/L			11/22/11 08:10	1				
Chloroethane	ND		1.0	0.21	ug/L			11/22/11 08:10	1				
Chloroform	ND		1.0	0.17	ug/L			11/22/11 08:10	1				
Dibromochloromethane	ND		1.0	0.14	ug/L			11/22/11 08:10	1				
1,2-Dibromo-3-Chloropropane	ND		1.0	0.14	ug/L			11/22/11 08:10	1				
1,2-Dibromoethane (EDB)	ND		1.0	0.18	ug/L			11/22/11 08:10	1				
1,1-Dichloroethane	ND		1.0	0.12	ug/L			11/22/11 08:10	1				
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/22/11 08:10	1				
1,1-Dichloroethene	ND		1.0	0.30	ug/L			11/22/11 08:10	1				

TestAmerica Pittsburgh 12/14/2011

Page 111 of 204

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-21590/4

Matrix: Water

Analysis Batch: 21590

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.17	ug/L			11/22/11 08:10	1
1,2-Dichloropropane	ND		1.0	0.095	ug/L			11/22/11 08:10	1
cis-1,3-Dichloropropene	ND		1.0	0.19	ug/L			11/22/11 08:10	1
trans-1,3-Dichloropropene	ND		1.0	0.15	ug/L			11/22/11 08:10	1
Ethylbenzene	ND		1.0	0.23	ug/L			11/22/11 08:10	1
2-Hexanone	ND		5.0	0.16	ug/L			11/22/11 08:10	1
Methylene Chloride	ND		1.0	0.15	ug/L			11/22/11 08:10	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	0.53	ug/L			11/22/11 08:10	1
Styrene	ND		1.0	0.097	ug/L			11/22/11 08:10	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/22/11 08:10	1
Tetrachloroethene	ND		1.0	0.15	ug/L			11/22/11 08:10	1
Toluene	ND		1.0	0.15	ug/L			11/22/11 08:10	1
1,1,1-Trichloroethane	ND		1.0	0.29	ug/L			11/22/11 08:10	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/22/11 08:10	1
Trichloroethene	ND		1.0	0.14	ug/L			11/22/11 08:10	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/22/11 08:10	1
Vinyl chloride	ND		1.0	0.23	ug/L			11/22/11 08:10	1
Xylenes, Total	ND		3.0	0.49	ug/L			11/22/11 08:10	1
Cyclohexane	ND		1.0	0.25	ug/L			11/22/11 08:10	1
cis-1,2-Dichloroethene	ND		1.0	0.24	ug/L			11/22/11 08:10	1
Dichlorodifluoromethane	ND		1.0	0.19	ug/L			11/22/11 08:10	1
Isopropylbenzene	ND		1.0	0.16	ug/L			11/22/11 08:10	1
Methyl acetate	ND		1.0	0.14	ug/L			11/22/11 08:10	1
Methylcyclohexane	ND		1.0	0.26	ug/L			11/22/11 08:10	1
Methyl tert-butyl ether	ND		1.0	0.18	ug/L			11/22/11 08:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.32	ug/L			11/22/11 08:10	1
1,2-Dichlorobenzene	ND		1.0	0.15	ug/L			11/22/11 08:10	1
1,3-Dichlorobenzene	ND		1.0	0.11	ug/L			11/22/11 08:10	1
1,4-Dichlorobenzene	ND		1.0	0.21	ug/L			11/22/11 08:10	1
1,2,4-Trichlorobenzene	ND		1.0	0.27	ug/L			11/22/11 08:10	1
Chloromethane	ND		1.0	0.00	ug/L			11/22/11 08:10	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 135	-		11/22/11 08:10	1
Toluene-d8 (Surr)	89		71 - 118			11/22/11 08:10	1
4-Bromofluorobenzene (Surr)	89		70 - 118			11/22/11 08:10	1
Dibromofluoromethane (Surr)	97		70 - 128			11/22/11 08:10	1

Lab Sample ID: LCS 180-21590/5

Matrix: Water

Analysis Batch: 21590

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

7	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Acetone	10.0	12.2		ug/L		122	22 - 150
Benzene	10.0	9.45		ug/L		95	80 - 120
Bromodichloromethane	10.0	9.80		ug/L		98	66 - 130
Bromoform	10.0	10.1		ug/L		101	46 - 150
Bromomethane	10.0	9.78		ug/L		98	33 - 150
2-Butanone (MEK)	10.0	10.4		ug/L		104	39 - 138

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-21590/5

Matrix: Water

Analysis Batch: 21590

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 21590	Spike	LCS	LCS		%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
Carbon disulfide	10.0	8.34	ug/L		54 - 132
Carbon tetrachloride	10.0	9.12	ug/L	91	55 ₋ 150
Chlorobenzene	10.0	9.79	ug/L	98	80 _ 120
Chloroethane	10.0	10.0	ug/L	100	36 _ 142
Chloroform	10.0	9.81	ug/L	98	72 - 127
Dibromochloromethane	10.0	10.3	ug/L	103	60 - 140
1,2-Dibromo-3-Chloropropane	10.0	8.76	ug/L	88	37 - 133
1,2-Dibromoethane (EDB)	10.0	9.81	ug/L	98	74 - 123
1,1-Dichloroethane	10.0	9.26	ug/L	93	73 - 126
1,2-Dichloroethane	10.0	9.85	ug/L	98	68 - 132
1,1-Dichloroethene	10.0	8.97	ug/L	90	65 - 136
trans-1,2-Dichloroethene	10.0	9.22	ug/L	92	73 - 126
1,2-Dichloropropane	10.0	9.69	ug/L	97	76 - 124
cis-1,3-Dichloropropene	10.0	9.53	ug/L	95	66 - 120
trans-1,3-Dichloropropene	10.0	9.61	ug/L	96	65 _ 125
Ethylbenzene	10.0	9.48	ug/L	95	72 - 126
2-Hexanone	10.0	9.33	ug/L	93	25 - 132
Methylene Chloride	10.0	8.51	ug/L	85	63 - 129
4-Methyl-2-pentanone (MIBK)	10.0	9.06	ug/L	91	45 - 145
Styrene	10.0	10.0	ug/L	100	71 ₋ 127
1,1,2,2-Tetrachloroethane	10.0	9.53	ug/L	95	62 - 125
Tetrachloroethene	10.0	9.33	ug/L	93	70 - 135
Toluene	10.0	9.78	ug/L	98	80 - 123
1,1,1-Trichloroethane	10.0	9.32	ug/L	93	63 - 133
1,1,2-Trichloroethane	10.0	10.2	ug/L	102	77 ₋ 127
Trichloroethene	10.0	9.18	ug/L	92	73 - 120
Trichlorofluoromethane	10.0	8.30	ug/L	83	44 - 150
Vinyl chloride	10.0	8.78	ug/L	88	53 - 138
Xylenes, Total	30.0	29.6	ug/L	99	76 - 128
Cyclohexane	10.0	8.33	ug/L	83	45 - 142
cis-1,2-Dichloroethene	10.0	9.33	ug/L	93	70 - 120
Dichlorodifluoromethane	10.0	5.20	ug/L	52	13 - 150
Isopropylbenzene	10.0	9.65	ug/L	96	58 - 130
Methyl acetate	10.0	9.70	ug/L	97	47 - 142
Methylcyclohexane	10.0	8.77	ug/L	88	45 - 145
Methyl tert-butyl ether	10.0	9.35	ug/L	94	64 - 123
1,1,2-Trichloro-1,2,2-trifluoroetha ne	10.0	9.11	ug/L	91	46 - 148
1,2-Dichlorobenzene	10.0	9.58	ug/L	96	77 - 120
1,3-Dichlorobenzene	10.0	9.03	ug/L	90	76 - 120
1,4-Dichlorobenzene	10.0	9.39	ug/L	94	77 - 120
1,2,4-Trichlorobenzene	10.0	9.21	ug/L	92	60 - 127
Chloromethane	10.0	7.98	ug/L	80	50 - 139
			- 3	- -	

.cs	LCS

Surrogate	%Recovery Qua	lifier Limits
1,2-Dichloroethane-d4 (Surr)	97	64 - 135
Toluene-d8 (Surr)	94	71 - 118
4-Bromofluorobenzene (Surr)	96	70 - 118
Dibromofluoromethane (Surr)	97	70 - 128

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-21590/6

Matrix: Water

Toluene

1.1.1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Analysis Batch: 21590

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec.

LCSD LCSD Spike RPD Limit Qualifier Limits RPD Analyte Added Result Unit D %Rec Acetone 10.0 11.5 ug/L 115 22 - 150 6 35 Benzene 10.0 9.40 94 80 - 120 32 ug/L Bromodichloromethane 10.0 9.18 ug/L 92 66 - 130 35 Bromoform 10.0 9.93 ug/L 99 46 - 150 2 35 Bromomethane 10.0 9.10 ug/L 91 33 - 150 35 2-Butanone (MEK) 10.0 10.7 107 39 - 138 2 35 ug/L 10.0 7.97 54 - 132 35 Carbon disulfide ug/L 80 Carbon tetrachloride 10.0 9.22 92 55 - 150 35 ug/L 96 80 - 120 29 10.0 9 58 2 Chlorobenzene ug/L 10.0 9.32 93 36 - 142 35 Chloroethane ug/L Chloroform 10.0 9.16 ug/L 92 72 _ 127 35 Dibromochloromethane 10.0 9.69 ug/L 97 60 - 140 35 1,2-Dibromo-3-Chloropropane 10 0 9 15 92 37 - 13335 ug/L 1,2-Dibromoethane (EDB) 10.0 9.31 93 74 - 123 35 ug/L 10.0 1.1-Dichloroethane 8.98 90 73 - 12635 ug/L 3 1,2-Dichloroethane 10.0 9.23 ug/L 92 68 - 132 32 1,1-Dichloroethene 10.0 8.60 86 65 - 136 35 ug/L trans-1,2-Dichloroethene 10.0 9.06 ug/L 91 73 - 126 2 35 1,2-Dichloropropane 10.0 9.37 ua/L 94 76 - 124 34 cis-1,3-Dichloropropene 10.0 9.42 ug/L 94 66 - 120 35 trans-1,3-Dichloropropene 10.0 9.59 ug/L 96 65 - 125 35 10.0 72 - 126 Ethylbenzene 9.76 ug/L 98 33 2-Hexanone 10.0 9.95 100 25 - 132 35 ug/L Methylene Chloride 10.0 ug/L 82 63 - 12935 8.18 4-Methyl-2-pentanone (MIBK) 10.0 8.99 ug/L 90 45 - 145 35 Styrene 10.0 9 65 ug/L 97 71 _ 127 34 1,1,2,2-Tetrachloroethane 10.0 9.36 ug/L 94 62 - 125 35 10.0 70 - 135 35 Tetrachloroethene 9.32 93

Trichlorofluoromethane 10.0 8 07 ug/L 81 44 - 150 Vinyl chloride 10.0 8.05 ug/L 81 53 - 138 28.9 96 76 - 128 Xylenes, Total 30.0 ug/L 2 Cyclohexane 10.0 8.57 86 45 - 142 ug/L 91 70 - 1202 cis-1.2-Dichloroethene 10.0 9 13 ug/L Dichlorodifluoromethane 10.0 5.17 52 13 - 150 ug/L ug/L 10.0 95 58 - 130 Isopropylbenzene 9.54 Methyl acetate 10.0 8.94 ug/L 89 47 - 142

10.0

10.0

10.0

10.0

9.70

9.11

9.91

9.21

ug/L

ug/L

ug/L

ug/L

ua/L

97

91

99

92

80 - 123

63 - 133

77 - 127

73 - 120

35

35

35

35

35

35

32

35

35

35

35

35

35

35

35

24

24

24

35

35

2

3

Methylcyclohexane 10.0 8.76 ug/L 88 45 - 145 0 Methyl tert-butyl ether 10.0 8.86 89 64 - 123 ug/L 10.0 8.66 87 46 - 148 ug/L 1,1,2-Trichloro-1,2,2-trifluoroetha ne 10.0 9.29 77 - 120 1,2-Dichlorobenzene ug/L 93

1.3-Dichlorobenzene 10.0 9 11 ug/L 91 76 - 120 1,4-Dichlorobenzene 10.0 9.31 93 77 - 120 ug/L 10.0 1.2.4-Trichlorobenzene 9.33 93 60 - 127ug/L Chloromethane 10.0 7.62 ug/L 76 50 - 139 5

TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-21590/6

Matrix: Water

Analysis Batch: 21590

Client: GAI Consultants

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

MB MB

Surrogate	%Recovery Qu	alifier Limits
1,2-Dichloroethane-d4 (Surr)	91	64 - 135
Toluene-d8 (Surr)	94	71 - 118
4-Bromofluorobenzene (Surr)	96	70 - 118
Dibromofluoromethane (Surr)	92	70 - 128

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-19851/1-A

Matrix: Solid

Analysis Batch: 20338

Dibenz(a,h)anthracene

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 19851

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1,2,4,5-Tetrachlorobenzene ND 0.33 0.025 mg/Kg 11/07/11 04:22 11/08/11 18:14 ND 0.067 11/07/11 04:22 Acenaphthene 0.0064 mg/Kg 11/08/11 18:14 Acetophenone NΠ 0.33 0.027 mg/Kg 11/07/11 04:22 11/08/11 18:14 Acenaphthylene ND 0.067 0.0076 11/07/11 04:22 11/08/11 18:14 mg/Kg ND Anthracene 0.067 0.0065 11/07/11 04:22 11/08/11 18:14 ma/Ka Benzo[a]anthracene ND 0.067 0.0084 11/07/11 04:22 11/08/11 18:14 mg/Kg Benzo[a]pyrene ND 0.067 0.0067 mg/Kg 11/07/11 04:22 11/08/11 18:14

Benzo[b]fluoranthene ND 0.067 0.010 mg/Kg 11/07/11 04:22 11/08/11 18:14 Benzo[g,h,i]perylene ND 0.067 0.0066 mg/Kg 11/07/11 04:22 11/08/11 18:14 Benzo[k]fluoranthene ND 0.067 0.013 mg/Kg 11/07/11 04:22 11/08/11 18:14 Bis(2-chloroethyl)ether ND 0.067 0.0090 mg/Kg 11/07/11 04:22 11/08/11 18:14 ND Bis(2-chloroethoxy)methane 0.33 0.022 mg/Kg 11/07/11 04:22 11/08/11 18:14 2,2'-oxybis[1-chloropropane] ND 0.067 0.0072 mg/Kg 11/07/11 04:22 11/08/11 18:14 ND Bis(2-ethylhexyl) phthalate 0.67 0.054 mg/Kg 11/07/11 04:22 11/08/11 18:14 4-Bromophenyl phenyl ether ND 0.33 0.029 mg/Kg 11/07/11 04:22 11/08/11 18:14

Butyl benzyl phthalate ND 11/07/11 04:22 11/08/11 18:14 0.33 0.046 mg/Kg Carbazole ND 0.067 0.0061 mg/Kg 11/07/11 04:22 11/08/11 18:14 ND 4-Chloroaniline 0.33 0.027 mg/Kg 11/07/11 04:22 11/08/11 18:14 2-Chloronaphthalene ND 0.067 0.0070 mg/Kg 11/07/11 04:22 11/08/11 18:14 4-Chlorophenyl phenyl ether ND 0.037 11/07/11 04:22 11/08/11 18:14 0.33 mg/Kg Chrysene ND 0.067 0.0079 mg/Kg 11/07/11 04:22 11/08/11 18:14 0.0074 mg/Kg ND 0.067 11/07/11 04:22 11/08/11 18:14

Di-n-butyl phthalate ND 0.33 0.042 mg/Kg 11/07/11 04:22 11/08/11 18:14 3,3'-Dichlorobenzidine ND 0.33 0.035 mg/Kg 11/07/11 04:22 11/08/11 18:14 Diethyl phthalate ND 0.33 0.036 mg/Kg 11/07/11 04:22 11/08/11 18:14 Dimethyl phthalate ND 0.33 0.036 mg/Kg 11/07/11 04:22 11/08/11 18:14 2,4-Dinitrotoluene ND 0.33 0.027 mg/Kg 11/07/11 04:22 11/08/11 18:14 ND 0.33 11/07/11 04:22 11/08/11 18:14 2.6-Dinitrotoluene 0.034 mg/Kg

Di-n-octyl phthalate ND 0.33 0.035 mg/Kg 11/07/11 04:22 11/08/11 18:14 Fluoranthene ND 0.067 0.0071 11/07/11 04:22 11/08/11 18:14 mg/Kg ND 0.067 0.0088 11/07/11 04:22 11/08/11 18:14 Fluorene mg/Kg Hexachlorobenzene ND 0.067 0.0071 11/07/11 04:22 11/08/11 18:14 ma/Ka 3,3'-Dimethylbenzidine ND 11/07/11 04:22 11/08/11 18:14 0.018 mg/Kg 1.7

ND Hexachlorobutadiene 0.067 0.0075 mg/Kg 11/07/11 04:22 11/08/11 18:14 Hexachlorocyclopentadiene ND 0.33 0.036 mg/Kg 11/07/11 04:22 11/08/11 18:14 Hexachloroethane ND 0.33 0.024 mg/Kg 11/07/11 04:22 11/08/11 18:14 Indeno[1,2,3-cd]pyrene ND 0.067 0.0069 mg/Kg 11/07/11 04:22 11/08/11 18:14

RL

0.33

MDL Unit

0.025 mg/Kg

0.0079 mg/Kg

0.036 mg/Kg

0.050 mg/Kg

0.030 mg/Kg

0.25 mg/Kg

0.050 mg/Kg

0.032 mg/Kg

0.14 mg/Kg

1.4 mg/Kg

0.038 mg/Kg

0.043 mg/Kg

0.025 mg/Kg

D

Prepared

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

11/07/11 04:22

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

ND

Lab Sample ID: MB 180-19851/1-A

Matrix: Solid

Analyte

Phenol

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

1,1'-Biphenyl

Caprolactam

Benzaldehyde

Benzoic acid

Benzidine

1,4-Dioxane

Azobenzene) o-Toluidine

1,2-Diphenylhydrazine(as

Atrazine

Isophorone

Analysis Batch: 20338

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 19851

Analyzed

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14 11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

11/08/11 18:14

Dil Fac

·				0 0			
2-Methylnaphthalene	ND	0.067	0.0060	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Naphthalene	ND	0.067	0.0057	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2-Nitroaniline	ND	1.7	0.15	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
3-Nitroaniline	ND	1.7	0.14	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
4-Nitroaniline	ND	1.7	0.14	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Nitrobenzene	ND	0.67	0.028	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
N-Nitrosodi-n-propylamine	ND	0.067	0.0078	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
N-Nitrosodiphenylamine	ND	0.33	0.031	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Phenanthrene	ND	0.067	0.011	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Pyrene	ND	0.067	0.0067	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
4-Chloro-3-methylphenol	ND	0.33	0.031	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2-Chlorophenol	ND	0.33	0.027	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Aniline	ND	0.33	0.026	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2-Methylphenol	ND	0.33	0.023	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Methylphenol, 3 & 4	ND	0.33	0.033	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2,4-Dichlorophenol	ND	0.067	0.0067	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2,4-Dimethylphenol	ND	0.33	0.052	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2,4-Dinitrophenol	ND	1.7	0.40	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
4,6-Dinitro-2-methylphenol	ND	1.7	0.13	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
2-Nitrophenol	ND	0.33	0.037	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Benzyl alcohol	ND	0.33	0.040	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
4-Nitrophenol	ND	1.7	0.12	mg/Kg	11/07/11 04:22	11/08/11 18:14	1
Pentachlorophenol	ND	0.33	0.030	mg/Kg	11/07/11 04:22	11/08/11 18:14	1

0.067

0.33

0.33

0.33

1.7

0.33

0.33

1.7

6.7

0.67

0.33

0.33

ND

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77	25 - 104	11/07/11 04:22	11/08/11 18:14	1
2-Fluorobiphenyl	72	35 ₋ 105	11/07/11 04:22	11/08/11 18:14	1
Terphenyl-d14	70	25 - 127	11/07/11 04:22	11/08/11 18:14	1
Phenol-d5	85	25 - 105	11/07/11 04:22	11/08/11 18:14	1
2-Fluorophenol	78	39 - 103	11/07/11 04:22	11/08/11 18:14	1
2,4,6-Tribromophenol	84	35 - 124	11/07/11 04:22	11/08/11 18:14	1

TestAmerica Pittsburgh 12/14/2011

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-19851/2-A

Matrix: Solid

Aniline

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 19851

Analysis Batch: 20338							Prep Bate	
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4,5-Tetrachlorobenzene	6.67	5.43		mg/Kg		81	30 - 125	_
Acenaphthene	6.67	5.97		mg/Kg		90	47 - 104	
Acenaphthylene	6.67	6.22		mg/Kg		93	49 - 114	
Anthracene	6.67	5.71		mg/Kg		86	45 - 112	
Benzo[a]anthracene	6.67	6.62		mg/Kg		99	47 - 110	
Benzo[a]pyrene	6.67	6.59		mg/Kg		99	47 - 112	
Benzo[b]fluoranthene	6.67	6.39		mg/Kg		96	41 - 107	
Benzo[g,h,i]perylene	6.67	5.90		mg/Kg		89	38 - 126	
Benzo[k]fluoranthene	6.67	6.03		mg/Kg		90	44 - 115	
Bis(2-chloroethyl)ether	6.67	5.59		mg/Kg		84	38 - 99	
Bis(2-chloroethoxy)methane	6.67	5.88		mg/Kg		88	44 - 101	
2,2'-oxybis[1-chloropropane]	6.67	5.65		mg/Kg		85	36 - 101	
Bis(2-ethylhexyl) phthalate	6.67	6.29		mg/Kg		94	40 - 122	
4-Bromophenyl phenyl ether	6.67	5.84		mg/Kg		88	47 - 110	
Butyl benzyl phthalate	6.67	6.65		mg/Kg		100	41 - 118	
Carbazole	6.67	5.56		mg/Kg		83	45 - 114	
4-Chloroaniline	6.67	5.88		mg/Kg		88	25 - 108	
2-Chloronaphthalene	6.67	5.57		mg/Kg		84	46 - 101	
4-Chlorophenyl phenyl ether	6.67	5.83		mg/Kg		88	47 - 109	
Chrysene	6.67	6.00		mg/Kg		90	46 - 111	
Dibenz(a,h)anthracene	6.67	5.92		mg/Kg		89	39 - 127	
Di-n-butyl phthalate	6.67	6.23		mg/Kg		93	43 - 121	
3,3'-Dichlorobenzidine	6.67	6.48		mg/Kg		97	19 - 122	
Diethyl phthalate	6.67	6.30		mg/Kg		95	47 ₋ 115	
Dimethyl phthalate	6.67	5.95		mg/Kg		89	49 - 111	
2,4-Dinitrotoluene	6.67	6.38		mg/Kg		96	45 - 124	
2,6-Dinitrotoluene	6.67	6.92		mg/Kg		104	50 - 122	
Di-n-octyl phthalate	6.67	7.64		mg/Kg		115	33 - 129	
Fluoranthene	6.67	5.98		mg/Kg		90	40 - 120	
Fluorene	6.67	5.92		mg/Kg		89	46 - 109	
Hexachlorobenzene	6.67	6.02		mg/Kg		90	47 - 108	
Hexachlorobutadiene	6.67	5.82		mg/Kg		87	43 - 107	
Hexachlorocyclopentadiene	6.67	5.95		mg/Kg		89	23 - 129	
Hexachloroethane	6.67	5.81		mg/Kg		87	37 - 97	
Indeno[1,2,3-cd]pyrene	6.67	5.79		mg/Kg		87	41 - 125	
Isophorone	6.67	5.88		mg/Kg		88	47 - 110	
2-Methylnaphthalene	6.67	6.03		mg/Kg		91	45 - 100	
Naphthalene	6.67	5.85		mg/Kg		88	43 - 100	
2-Nitroaniline	6.67	6.43		mg/Kg		96	45 ₋ 117	
3-Nitroaniline	6.67	6.59		mg/Kg		99	34 - 122	
4-Nitroaniline	6.67	6.32		mg/Kg		95	38 - 123	
Nitrobenzene	6.67	5.76					43 - 104	
	6.67	6.01		mg/Kg		86 90	43 - 104	
N-Nitrosodi-n-propylamine	6.67	6.03		mg/Kg		90	42 - 107 44 - 111	
N-Nitrosodiphenylamine				mg/Kg				
Phenanthrene	6.67	5.91		mg/Kg		89	43 - 108	
Pyrene 4 Chloro 3 methylphonol	6.67	6.31		mg/Kg		95 02	41 ₋ 115	
4-Chloro-3-methylphenol	6.67	6.20		mg/Kg		93	47 - 109 40 - 101	
2-Chlorophenol	6.67	5.85		mg/Kg		88	40 - 101	

4

5

0

3

IU

12

21 - 94

5.58

mg/Kg

6.67

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-19851/2-A

Matrix: Solid

Analysis Batch: 20338

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 19851

Analysis Batch. 20000	Spike	LCS	LCS			%Rec.	. 15001
Analyte	Added	Result	Qualifier	Unit	D %Red	Limits	
2-Methylphenol	6.67	5.85		mg/Kg	88	40 - 104	
2,4-Dichlorophenol	6.67	6.16		mg/Kg	92	47 - 105	
2,4-Dimethylphenol	6.67	6.13		mg/Kg	92	44 - 105	
2,4-Dinitrophenol	6.67	7.54		mg/Kg	113	10 - 146	
4,6-Dinitro-2-methylphenol	6.67	6.62		mg/Kg	99	24 - 134	
2-Nitrophenol	6.67	6.23		mg/Kg	93	46 - 106	
Benzyl alcohol	6.67	5.73		mg/Kg	86	39 - 108	
4-Nitrophenol	6.67	6.37		mg/Kg	95	36 - 127	
Pentachlorophenol	6.67	6.57		mg/Kg	99	17 - 122	
Phenol	6.67	5.74		mg/Kg	86	41 - 102	
2,4,5-Trichlorophenol	6.67	5.80		mg/Kg	87	48 - 108	
2,4,6-Trichlorophenol	6.67	6.53		mg/Kg	98	50 - 106	
Caprolactam	6.67	6.38		mg/Kg	96	30 _ 150	
Benzaldehyde	6.67	3.24		mg/Kg	49	30 - 150	
Benzoic acid	6.67	7.06		mg/Kg	106	11 - 133	
Benzidine	6.67	6.26	J	mg/Kg	94	30 - 120	
1,4-Dioxane	6.67	5.17		mg/Kg	78	41 - 102	
1,2-Diphenylhydrazine(as Azobenzene)	6.67	6.08		mg/Kg	91	43 - 113	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85		25 - 104
2-Fluorobiphenyl	86		35 - 105
Terphenyl-d14	93		25 - 127
Phenol-d5	92		25 - 105
2-Fluorophenol	91		39 - 103
2,4,6-Tribromophenol	97		35 - 124

Lab Sample ID: LCSD 180-19851/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Pren Batch: 19851

matrixi cona							PO O		
Analysis Batch: 20338							Prep	Batch:	19851
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4,5-Tetrachlorobenzene	6.67	5.20		mg/Kg		78	30 _ 125	4	25
Acenaphthene	6.67	5.67		mg/Kg		85	47 - 104	5	40
Acenaphthylene	6.67	5.82		mg/Kg		87	49 - 114	7	38
Anthracene	6.67	5.43		mg/Kg		81	45 - 112	5	42
Benzo[a]anthracene	6.67	6.50		mg/Kg		98	47 - 110	2	40
Benzo[a]pyrene	6.67	6.42		mg/Kg		96	47 - 112	3	42
Benzo[b]fluoranthene	6.67	6.59		mg/Kg		99	41 - 107	3	53
Benzo[g,h,i]perylene	6.67	5.75		mg/Kg		86	38 - 126	3	43
Benzo[k]fluoranthene	6.67	5.63		mg/Kg		85	44 - 115	7	44
Bis(2-chloroethyl)ether	6.67	5.55		mg/Kg		83	38 - 99	1	43
Bis(2-chloroethoxy)methane	6.67	5.76		mg/Kg		86	44 - 101	2	36
2,2'-oxybis[1-chloropropane]	6.67	5.51		mg/Kg		83	36 - 101	2	41
Bis(2-ethylhexyl) phthalate	6.67	6.37		mg/Kg		96	40 - 122	1	41
4-Bromophenyl phenyl ether	6.67	5.66		mg/Kg		85	47 - 110	3	46
Butyl benzyl phthalate	6.67	6.86		mg/Kg		103	41 - 118	3	41
Carbazole	6.67	5.38		mg/Kg		81	45 - 114	3	36
4-Chloroaniline	6.67	5.89		mg/Kg		88	25 - 108	0	36

TestAmerica Pittsburgh 12/14/2011

Page 118 of 204

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-19851/3-A

Matrix: Solid

1,4-Dioxane

Analysis Batch: 20338

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Analysis Batch: 20338	.						Batch:	
	Spike	LCSD LC		_	a. =	%Rec.		RPI
Analyte	Added	Result Qu		D	%Rec	Limits	RPD	Lim
2-Chloronaphthalene	6.67	5.27	mg/Kg		79	46 - 101	6	4
4-Chlorophenyl phenyl ether	6.67	5.41	mg/Kg		81	47 - 109	8	3
Chrysene	6.67	5.70	mg/Kg		86	46 - 111	5	3
Dibenz(a,h)anthracene	6.67	5.77	mg/Kg		87	39 - 127	3	4
Di-n-butyl phthalate	6.67	6.09	mg/Kg		91	43 _ 121	2	3
3,3'-Dichlorobenzidine	6.67	6.11	mg/Kg		92	19 - 122	6	4
Diethyl phthalate	6.67	5.89	mg/Kg		88	47 - 115	7	3
Dimethyl phthalate	6.67	5.64	mg/Kg		85	49 - 111	5	3
2,4-Dinitrotoluene	6.67	5.92	mg/Kg		89	45 - 124	7	4
2,6-Dinitrotoluene	6.67	6.52	mg/Kg		98	50 - 122	6	4
Di-n-octyl phthalate	6.67	7.54	mg/Kg		113	33 - 129	1	4
Fluoranthene	6.67	5.83	mg/Kg		87	40 - 120	2	3
Fluorene	6.67	5.67	mg/Kg		85	46 - 109	4	4
Hexachlorobenzene	6.67	5.84	mg/Kg		88	47 _ 108	3	4
Hexachlorobutadiene	6.67	5.62	mg/Kg		84	43 - 107	3	3
Hexachlorocyclopentadiene	6.67	5.55	mg/Kg		83	23 - 129	7	4
Hexachloroethane	6.67	5.66	mg/Kg		85	37 - 97	3	4
Indeno[1,2,3-cd]pyrene	6.67	5.62	mg/Kg		84	41 - 125	3	4
Isophorone	6.67	5.87	mg/Kg		88	47 - 110	0	3
2-Methylnaphthalene	6.67	5.88	mg/Kg		88	45 - 100	3	4
	6.67	5.71	mg/Kg		86	43 - 100	2	3
Naphthalene 2-Nitroaniline	6.67	6.10			92	45 - 100 45 - 117	5	4
			mg/Kg					
3-Nitroaniline	6.67	6.20	mg/Kg		93	34 - 122	6	3
4-Nitroaniline	6.67	5.92	mg/Kg		89	38 - 123	7	4
Nitrobenzene	6.67	5.68	mg/Kg		85	43 - 104	1	3
N-Nitrosodi-n-propylamine	6.67	5.92	mg/Kg		89	42 - 107	1	4
N-Nitrosodiphenylamine	6.67	5.88	mg/Kg		88	44 - 111	3	4
Phenanthrene	6.67	6.27	mg/Kg		94	43 - 108	6	3
Pyrene	6.67	6.24	mg/Kg		94	41 - 115	1	4
4-Chloro-3-methylphenol	6.67	6.19	mg/Kg		93	47 - 109	0	3
2-Chlorophenol	6.67	5.75	mg/Kg		86	40 - 101	2	4
Aniline	6.67	5.52	mg/Kg		83	21 - 94	1	4
2-Methylphenol	6.67	5.78	mg/Kg		87	40 - 104	1	4
2,4-Dichlorophenol	6.67	6.07	mg/Kg		91	47 - 105	1	3
2,4-Dimethylphenol	6.67	5.98	mg/Kg		90	44 - 105	2	4
2,4-Dinitrophenol	6.67	6.97	mg/Kg		105	10 - 146	8	8
4,6-Dinitro-2-methylphenol	6.67	6.48	mg/Kg		97	24 - 134	2	8
2-Nitrophenol	6.67	6.19	mg/Kg		93	46 - 106	1	3
Benzyl alcohol	6.67	5.79	mg/Kg		87	39 - 108	1	4
4-Nitrophenol	6.67	5.84	mg/Kg		88	36 - 127	9	4
Pentachlorophenol	6.67	6.28	mg/Kg		94	17 - 122	4	5
Phenol	6.67	5.69	mg/Kg		85	41 - 102	1	3
2,4,5-Trichlorophenol	6.67	5.32	mg/Kg		80	48 - 108	9	4
					93	50 - 106	5	4
2,4,6-Trichlorophenol	6.67 6.67	6.20	mg/Kg					
Caprolactam		6.94	mg/Kg		104	30 ₋ 150	8	4
Benzaldehyde	6.67	3.27	mg/Kg		49	30 - 150	1	4
Benzoic acid	6.67	7.22	mg/Kg		108	11 - 133	2	1
Benzidine	6.67	5.47 J	mg/Kg		82	30 - 120	13	3

5

35

41 - 102

4.91

mg/Kg

6.67

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 180-19851/3-A

Matrix: Solid

Analysis Batch: 20338

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 19851

Spike Added Result Qualifier Analyte Unit Limits RPD Limit %Rec 6.67 5.24 79 43 - 113 41 15 1,2-Diphenylhydrazine(as mg/Kg

LCSD LCSD

Azobenzene)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85		25 - 104
2-Fluorobiphenyl	81		35 - 105
Terphenyl-d14	98		25 - 127
Phenol-d5	93		25 - 105
2-Fluorophenol	92		39 - 103
2,4,6-Tribromophenol	93		35 - 124

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 180-20427/1-A

Matrix: Solid

Analysis Batch: 20547								Prep Batch: 20427	
		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.33	0.025	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Acenaphthene	ND		0.067	0.0064	0 0		11/11/11 03:04	11/11/11 11:20	1
Acetophenone	ND		0.33	0.027			11/11/11 03:04	11/11/11 11:20	1
Acenaphthylene	ND		0.067	0.0076			11/11/11 03:04	11/11/11 11:20	1
Anthracene	ND		0.067	0.0065	0 0		11/11/11 03:04	11/11/11 11:20	1
Benzo[a]anthracene	ND		0.067	0.0084			11/11/11 03:04	11/11/11 11:20	1
Benzo[a]pyrene	ND		0.067	0.0067			11/11/11 03:04	11/11/11 11:20	1
Benzo[b]fluoranthene	ND		0.067	0.010	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Benzo[g,h,i]perylene	ND		0.067	0.0066	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Benzo[k]fluoranthene	ND		0.067	0.013	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Bis(2-chloroethyl)ether	ND		0.067	0.0090	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Bis(2-chloroethoxy)methane	ND		0.33	0.022	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
2,2'-oxybis[1-chloropropane]	ND		0.067	0.0072	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Bis(2-ethylhexyl) phthalate	ND		0.67	0.054	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
4-Bromophenyl phenyl ether	ND		0.33	0.029	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Butyl benzyl phthalate	ND		0.33	0.046	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Carbazole	ND		0.067	0.0061	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
4-Chloroaniline	ND		0.33	0.027	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
2-Chloronaphthalene	ND		0.067	0.0070	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
4-Chlorophenyl phenyl ether	ND		0.33	0.037	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Chrysene	ND		0.067	0.0079	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Dibenz(a,h)anthracene	ND		0.067	0.0074	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Di-n-butyl phthalate	ND		0.33	0.042	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
3,3'-Dichlorobenzidine	ND		0.33	0.035	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Diethyl phthalate	ND		0.33	0.036	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Dimethyl phthalate	ND		0.33	0.036	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
2,4-Dinitrotoluene	ND		0.33	0.027	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
2,6-Dinitrotoluene	ND		0.33	0.034	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Di-n-octyl phthalate	ND		0.33	0.035			11/11/11 03:04	11/11/11 11:20	1
Fluoranthene	ND		0.067	0.0071	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Fluorene	ND		0.067	0.0088	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Hexachlorobenzene	ND		0.067	0.0071	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Hexachlorobutadiene	ND		0.067	0.0075	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
Hexachlorocyclopentadiene	ND		0.33	0.036	mg/Kg		11/11/11 03:04	11/11/11 11:20	1
- · · · · · · · · · · · · · · · · · · ·									

Client: GAI Consultants TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-20427/1-A Matrix: Solid

Analysis Batch: 20547

80-20427/1-A Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 20427

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed ND 0.33 11/11/11 03:04 11/11/11 11:20 Hexachloroethane 0.024 mg/Kg Indeno[1,2,3-cd]pyrene ND 0.067 0.0069 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND 11/11/11 11:20 Isophorone 0.33 0.025 mg/Kg 11/11/11 03:04 2-Methylnaphthalene ND 0.067 0.0060 mg/Kg 11/11/11 03:04 11/11/11 11:20 Naphthalene ND 0.067 0.0057 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND 11/11/11 03:04 11/11/11 11:20 2-Nitroaniline 1.7 0.15 mg/Kg 3-Nitroaniline ND mg/Kg 11/11/11 03:04 11/11/11 11:20 1.7 0.14 4-Nitroaniline ND 1.7 0.14 mg/Kg 11/11/11 03:04 11/11/11 11:20 Nitrobenzene ND 0.67 0.028 mg/Kg 11/11/11 03:04 11/11/11 11:20 N-Nitrosodi-n-propylamine ND 0.067 0.0078 mg/Kg 11/11/11 03:04 11/11/11 11:20 N-Nitrosodiphenylamine ND 0.33 0.031 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND Phenanthrene 0.067 0.011 mg/Kg 11/11/11 03:04 11/11/11 11:20 Pyrene ND 0.067 0.0067 mg/Kg 11/11/11 03:04 11/11/11 11:20 4-Chloro-3-methylphenol ND 0.33 0.031 mg/Kg 11/11/11 03:04 11/11/11 11:20 11/11/11 03:04 2-Chlorophenol ND 0.33 0.027 mg/Kg 11/11/11 11:20 Aniline ND 0.33 11/11/11 11:20 0.026 mg/Kg 11/11/11 03:04 11/11/11 03:04 2-Methylphenol ND 0.33 0.023 mg/Kg 11/11/11 11:20 Methylphenol, 3 & 4 ND 0.33 0.033 mg/Kg 11/11/11 03:04 11/11/11 11:20 2,4-Dichlorophenol ND 0.067 0.0067 11/11/11 03:04 11/11/11 11:20 mg/Kg 0.052 mg/Kg 2,4-Dimethylphenol ND 0.33 11/11/11 11:20 11/11/11 03:04 2,4-Dinitrophenol ND 1.7 0.40 11/11/11 03:04 11/11/11 11:20 mg/Kg 4,6-Dinitro-2-methylphenol ND 0.13 11/11/11 11:20 1.7 ma/Ka 11/11/11 03:04 2-Nitrophenol ND 0.33 0.037 mg/Kg 11/11/11 03:04 11/11/11 11:20 Benzyl alcohol ND 0.33 11/11/11 03:04 11/11/11 11:20 0.040 mg/Kg 4-Nitrophenol ND 1.7 0.12 mg/Kg 11/11/11 03:04 11/11/11 11:20 Pentachlorophenol ND 0.33 0.030 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND Phenol 0.067 0.0079 mg/Kg 11/11/11 03:04 11/11/11 11:20 2,4,5-Trichlorophenol ND 0.33 0.036 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND 0.050 mg/Kg 11/11/11 03:04 2,4,6-Trichlorophenol 0.33 11/11/11 11:20 1,1'-Biphenyl ND 0.33 0.030 mg/Kg 11/11/11 03:04 11/11/11 11:20 Caprolactam NΠ 1.7 0.25 mg/Kg 11/11/11 03:04 11/11/11 11:20 Benzaldehyde ND 0.33 0.050 mg/Kg 11/11/11 03:04 11/11/11 11:20 Atrazine ND 0.33 0.032 mg/Kg 11/11/11 03:04 11/11/11 11:20 Benzoic acid ND 1.7 11/11/11 03:04 11/11/11 11:20 0.14 mg/Kg Benzidine ND 6.7 11/11/11 03:04 11/11/11 11:20 1.4 mg/Kg 1,4-Dioxane ND 0.67 0.038 mg/Kg 11/11/11 03:04 11/11/11 11:20 ND 0.33 0.043 mg/Kg 11/11/11 03:04 11/11/11 11:20 1,2-Diphenylhydrazine(as Azobenzene)

|--|

%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
68		25 - 104	11/11/11 03:04	11/11/11 11:20	1
71		35 - 105	11/11/11 03:04	11/11/11 11:20	1
82		25 - 127	11/11/11 03:04	11/11/11 11:20	1
80		25 - 105	11/11/11 03:04	11/11/11 11:20	1
76		39 - 103	11/11/11 03:04	11/11/11 11:20	1
90		35 - 124	11/11/11 03:04	11/11/11 11:20	1
	68 71 82 80 76	71 82 80 76	68 25 - 104 71 35 - 105 82 25 - 127 80 25 - 105 76 39 - 103	68 25 - 104 11/11/11 03:04 71 35 - 105 11/11/11 03:04 82 25 - 127 11/11/11 03:04 80 25 - 105 11/11/11 03:04 76 39 - 103 11/11/11 03:04	68 25 - 104 11/11/11 03:04 11/11/11 11:20 71 35 - 105 11/11/11 03:04 11/11/11 11:20 82 25 - 127 11/11/11 03:04 11/11/11 11:20 80 25 - 105 11/11/11 03:04 11/11/11 11:20 76 39 - 103 11/11/11 03:04 11/11/11 11:20

TestAmerica Pittsburgh 12/14/2011

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 180-20427/1-A

Matrix: Solid

Analysis Batch: 20884

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20427

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3,3'-Dimethylbenzidine	ND		1.7	0.018	mg/Kg		11/11/11 03:04	11/14/11 14:41	1
o-Toluidine	ND		0.33	0.025	mg/Kg		11/11/11 03:04	11/14/11 14:41	1

Lab Sample ID: LCS 180-20427/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Analysis Batch: 20547

	Prep Type: Total/NA
	Prep Batch: 20427
 100 100	0/ 5

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,2,4,5-Tetrachlorobenzene 6.67 4.85 73 30 - 125 mg/Kg Acenaphthene 6.67 5.19 mg/Kg 78 47 - 104 6 67 5.29 79 49 _ 114 Acenaphthylene mg/Kg Anthracene 6.67 5.01 75 45 - 112 mg/Kg Benzo[a]anthracene 6.67 86 47 - 110 5.72 mg/Kg Benzo[a]pyrene 6.67 5.44 mg/Kg 82 47 - 112 Benzo[b]fluoranthene 6.67 5.95 mg/Kg 89 41 - 107 Benzo[g,h,i]perylene 6.67 4.87 mg/Kg 73 38 - 126 Benzo[k]fluoranthene 6.67 4.79 mg/Kg 72 44 - 115 6.67 73 38 - 99 Bis(2-chloroethyl)ether 4.86 mg/Kg Bis(2-chloroethoxy)methane 6.67 4.99 75 44 - 101 mg/Kg 6.67 36 - 101 2,2'-oxybis[1-chloropropane] 4 71 71 mg/Kg 6.67 82 40 - 122 Bis(2-ethylhexyl) phthalate 5.45 mg/Kg 4-Bromophenyl phenyl ether 6.67 5.35 80 47 _ 110 mg/Kg Butyl benzyl phthalate 6.67 5.31 80 41 - 118 mg/Kg 72 Carbazole 6.67 4 81 45 _ 114 mg/Kg 4-Chloroaniline 6.67 5.31 80 25 - 108 mg/Kg 6.67 4.94 74 46 - 101 2-Chloronaphthalene mg/Kg 47 - 109 4-Chlorophenyl phenyl ether 6.67 5.23 mg/Kg 78 6.67 5.09 76 46 - 111 Chrysene mg/Kg Dibenz(a,h)anthracene 6.67 5.31 mg/Kg 80 39 _ 127 Di-n-butyl phthalate 6.67 5.07 76 43 - 121 mg/Kg 3,3'-Dichlorobenzidine 6.67 4.98 mg/Kg 75 19 - 122 Diethyl phthalate 6.67 5.17 mg/Kg 78 47 - 115 Dimethyl phthalate 6.67 77 49 - 111 5.11 mg/Kg 2,4-Dinitrotoluene 6.67 5.34 80 45 - 124 mg/Kg 2,6-Dinitrotoluene 6.67 5.42 81 50 - 122mq/Kq Di-n-octyl phthalate 6.67 6.21 mg/Kg 93 33 - 129 Fluoranthene 6 67 5.01 75 40 - 120 mg/Kg Fluorene 6.67 5.23 mg/Kg 78 46 - 109 Hexachlorobenzene 6.67 5.22 78 47 - 108 mg/Kg Hexachlorobutadiene 6.67 4.91 74 43 - 107 mg/Kg Hexachlorocyclopentadiene 6.67 5.24 79 23 - 129 mg/Kg Hexachloroethane 6.67 4.70 mg/Kg 70 37 - 97Indeno[1,2,3-cd]pyrene 6.67 5.00 ma/Ka 75 41 - 125 6.67 47 - 110 Isophorone 5 23 mg/Kg 78 45 - 100 2-Methylnaphthalene 6.67 5.18 mg/Kg 78 Naphthalene 6.67 4.93 74 43 _ 100 mg/Kg 2-Nitroaniline 6.67 5.29 79 45 - 117 mg/Kg 3-Nitroaniline 5.06 76 34 - 122 6.67 mg/Kg 4-Nitroaniline 6.67 5.02 75 38 - 123 mg/Kg Nitrobenzene 6.67 4.85 73 43 - 104 mg/Kg

> TestAmerica Pittsburgh 12/14/2011

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20427/2-A

Matrix: Solid

Analysis Batch: 20547

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20427

Analysis Daton. 20047	Spike	LCS	LCS				%Rec.	2042
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
N-Nitrosodi-n-propylamine	6.67	4.98		mg/Kg		75	42 - 107	
N-Nitrosodiphenylamine	6.67	5.25		mg/Kg		79	44 - 111	
Phenanthrene	6.67	5.52		mg/Kg		83	43 - 108	
Pyrene	6.67	5.36		mg/Kg		80	41 - 115	
4-Chloro-3-methylphenol	6.67	5.51		mg/Kg		83	47 - 109	
2-Chlorophenol	6.67	4.86		mg/Kg		73	40 - 101	
Aniline	6.67	5.21		mg/Kg		78	21 - 94	
2-Methylphenol	6.67	4.87		mg/Kg		73	40 - 104	
2,4-Dichlorophenol	6.67	5.37		mg/Kg		81	47 - 105	
2,4-Dimethylphenol	6.67	5.11		mg/Kg		77	44 - 105	
2,4-Dinitrophenol	6.67	5.02		mg/Kg		75	10 - 146	
4,6-Dinitro-2-methylphenol	6.67	5.43		mg/Kg		81	24 - 134	
2-Nitrophenol	6.67	5.21		mg/Kg		78	46 - 106	
Benzyl alcohol	6.67	4.19		mg/Kg		63	39 - 108	
4-Nitrophenol	6.67	5.16		mg/Kg		77	36 - 127	
Pentachlorophenol	6.67	5.05		mg/Kg		76	17 - 122	
Phenol	6.67	4.67		mg/Kg		70	41 - 102	
2,4,5-Trichlorophenol	6.67	5.22		mg/Kg		78	48 - 108	
2,4,6-Trichlorophenol	6.67	5.54		mg/Kg		83	50 - 106	
Caprolactam	6.67	5.77		mg/Kg		86	30 - 150	
Benzaldehyde	6.67	2.35		mg/Kg		35	30 - 150	
Benzoic acid	6.67	4.69		mg/Kg		70	11 - 133	
Benzidine	6.67	4.10	J	mg/Kg		62	30 - 120	
1,4-Dioxane	6.67	4.12		mg/Kg		62	41 - 102	
1,2-Diphenylhydrazine(as	6.67	4.78		mg/Kg		72	43 - 113	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	73		25 - 104
2-Fluorobiphenyl	77		35 - 105
Terphenyl-d14	84		25 - 127
Phenol-d5	80		25 - 105
2-Fluorophenol	82		39 - 103
2,4,6-Tribromophenol	88		35 - 124

Lab Sample ID: MB 180-20532/1-A

Matrix: Solid

Azobenzene)

Analysis Batch: 20884

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.33	0.025	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Acenaphthene	ND		0.067	0.0064	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Acetophenone	ND		0.33	0.027	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Acenaphthylene	ND		0.067	0.0076	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Anthracene	ND		0.067	0.0065	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Benzo[a]anthracene	ND		0.067	0.0084	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Benzo[a]pyrene	ND		0.067	0.0067	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Benzo[b]fluoranthene	ND		0.067	0.010	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Benzo[g,h,i]perylene	ND		0.067	0.0066	mg/Kg		11/12/11 03:15	11/14/11 15:01	1
Benzo[k]fluoranthene	ND		0.067	0.013	mg/Kg		11/12/11 03:15	11/14/11 15:01	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

Lab Sample ID: MB 180-20532/1-A

Matrix: Solid

Analyte

Analysis Batch: 20884

Bis(2-chloroethoxy)methane

2,2'-oxybis[1-chloropropane]

4-Bromophenyl phenyl ether

Bis(2-ethylhexyl) phthalate

3,3'-Dichlorobenzidine

Bis(2-chloroethyl)ether

Client Sample ID: Method Blank

Prep Type: Total/NA
Prep Batch: 20532

11/14/11 15:01

	Prep Type: Prep Batc		
narod	Analyzod	Dil Eac	

RL MDL Unit Prepared D Analyzed 0.067 11/12/11 03:15 0.0090 mg/Kg 11/14/11 15:01 0.33 0.022 mg/Kg 11/12/11 03:15 11/14/11 15:01 0.067 0.0072 mg/Kg 11/12/11 03:15 11/14/11 15:01 0.67 0.054 mg/Kg 11/12/11 03:15 11/14/11 15:01 0.029 0.33 mg/Kg

11/12/11 03:15 11/14/11 15:01 11/12/11 03:15 11/14/11 15:01

11/12/11 03:15

Butyl benzyl phthalate ND 0.33 0.046 mg/Kg ND 0.067 11/12/11 03:15 11/14/11 15:01 Carbazole 0.0061 mg/Kg 4-Chloroaniline ND 0.33 0.027 mg/Kg 11/12/11 03:15 11/14/11 15:01 2-Chloronaphthalene ND 0.067 0.0070 11/12/11 03:15 11/14/11 15:01 ma/Ka

4-Chlorophenyl phenyl ether ND 0.33 0.037 mg/Kg 11/12/11 03:15 11/14/11 15:01 Chrysene ND 0.067 0.0079 ma/Ka 11/12/11 03:15 11/14/11 15:01 ND Dibenz(a,h)anthracene 0.067 0.0074 mg/Kg 11/12/11 03:15 11/14/11 15:01 Di-n-butyl phthalate ND 0.33 0.042 11/12/11 03:15 11/14/11 15:01 mg/Kg

0.33

0.035

mg/Kg

Diethyl phthalate ND 0.33 0.036 mg/Kg 11/12/11 03:15 11/14/11 15:01 Dimethyl phthalate ND 0.33 0.036 mg/Kg 11/12/11 03:15 11/14/11 15:01 2,4-Dinitrotoluene ND 0.33 0.027 mg/Kg 11/12/11 03:15 11/14/11 15:01 2 6-Dinitrotoluene ND 0.33 0.034 mg/Kg 11/12/11 03:15 11/14/11 15:01 ND 0.33 11/12/11 03:15 Di-n-octyl phthalate 0.035 mg/Kg 11/14/11 15:01

Fluoranthene ND 0.067 0.0071 mg/Kg 11/12/11 03:15 11/14/11 15:01 ND 0.0088 11/12/11 03:15 11/14/11 15:01 Fluorene 0.067 mg/Kg ND 0.0071 Hexachlorobenzene 0.067 ma/Ka 11/12/11 03:15 11/14/11 15:01 3,3'-Dimethylbenzidine ND 0.018 mg/Kg 11/12/11 03:15 11/14/11 15:01 1.7 Hexachlorobutadiene ND 11/12/11 03:15 11/14/11 15:01 0.067 0.0075 mg/Kg Hexachlorocyclopentadiene ND 0.33 0.036 mg/Kg 11/12/11 03:15 11/14/11 15:01 Hexachloroethane ND 0.33 0.024 mg/Kg 11/12/11 03:15 11/14/11 15:01

ND Indeno[1,2,3-cd]pyrene 0.067 0.0069 mg/Kg 11/12/11 03:15 11/14/11 15:01 Isophorone ND 0.33 0.025 mg/Kg 11/12/11 03:15 11/14/11 15:01 ND 2-Methylnaphthalene 0.067 0.0060 mg/Kg 11/12/11 03:15 11/14/11 15:01 Naphthalene ND 0.067 0.0057 mg/Kg 11/12/11 03:15 11/14/11 15:01 2-Nitroaniline NΠ 1.7 0.15 mg/Kg 11/12/11 03:15 11/14/11 15:01 3-Nitroaniline ND 1.7 0.14 11/12/11 03:15 11/14/11 15:01

mg/Kg 4-Nitroaniline ND 1.7 0.14 11/12/11 03:15 11/14/11 15:01 mg/Kg ND 0.67 0.028 11/12/11 03:15 11/14/11 15:01 Nitrobenzene mg/Kg 0.0078 ND 0.067 11/12/11 03:15 N-Nitrosodi-n-propylamine mg/Kg 11/14/11 15:01 N-Nitrosodiphenylamine ND 0.33 0.031 mg/Kg 11/12/11 03:15 11/14/11 15:01 Phenanthrene ND 0.067 0.011 mg/Kg 11/12/11 03:15 11/14/11 15:01

ND Pyrene 0.067 0.0067 mg/Kg 11/12/11 03:15 11/14/11 15:01 4-Chloro-3-methylphenol ND 0.33 0.031 ma/Ka 11/12/11 03:15 11/14/11 15:01 ND 2-Chlorophenol 0.33 0.027 mg/Kg 11/12/11 03:15 11/14/11 15:01 Aniline ND 0.33 0.026 11/12/11 03:15 11/14/11 15:01 mg/Kg

ND 0.023 2-Methylphenol 0.33 11/12/11 03:15 11/14/11 15:01 mg/Kg ND Methylphenol, 3 & 4 0.33 0.033 mg/Kg 11/12/11 03:15 11/14/11 15:01 2,4-Dichlorophenol NΠ 0.067 0.0067 mg/Kg 11/12/11 03:15 11/14/11 15:01 2,4-Dimethylphenol ND 0.33 0.052 11/12/11 03:15 11/14/11 15:01 mg/Kg ND 2,4-Dinitrophenol 17 0.40 mg/Kg 11/12/11 03:15 11/14/11 15:01

4,6-Dinitro-2-methylphenol ND 1.7 0.13 mg/Kg 11/12/11 03:15 11/14/11 15:01 2-Nitrophenol ND 0.33 0.037 mg/Kg 11/12/11 03:15 11/14/11 15:01 Benzyl alcohol ND 0.33 0.040 mg/Kg 11/12/11 03:15 11/14/11 15:01 4-Nitrophenol ND 11/12/11 03:15 11/14/11 15:01 1.7 0.12 ma/Ka

TestAmerica Job ID: 180-5622-1

1

Client: GAI Consultants

Analysis Batch: 20884

Matrix: Solid

Project/Site: USS Clairton - C071418.13

Lab Sample ID: MB 180-20532/1-A

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 20532

	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Pentachlorophenol	ND		0.33	0.030	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Phenol	ND		0.067	0.0079	mg/Kg		11/12/11 03:15	11/14/11 15:01	
2,4,5-Trichlorophenol	ND		0.33	0.036	mg/Kg		11/12/11 03:15	11/14/11 15:01	
2,4,6-Trichlorophenol	ND		0.33	0.050	mg/Kg		11/12/11 03:15	11/14/11 15:01	
1,1'-Biphenyl	ND		0.33	0.030	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Caprolactam	ND		1.7	0.25	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Benzaldehyde	ND		0.33	0.050	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Atrazine	ND		0.33	0.032	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Benzoic acid	ND		1.7	0.14	mg/Kg		11/12/11 03:15	11/14/11 15:01	
Benzidine	ND		6.7	1.4	mg/Kg		11/12/11 03:15	11/14/11 15:01	
1,4-Dioxane	ND		0.67	0.038	mg/Kg		11/12/11 03:15	11/14/11 15:01	
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.33	0.043	mg/Kg		11/12/11 03:15	11/14/11 15:01	
o-Toluidine	ND		0.33	0.025	mg/Kg		11/12/11 03:15	11/14/11 15:01	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71	25 - 104	11/12/11 03:15	11/14/11 15:01	1
2-Fluorobiphenyl	66	35 ₋ 105	11/12/11 03:15	11/14/11 15:01	1
Terphenyl-d14	62	25 - 127	11/12/11 03:15	11/14/11 15:01	1
Phenol-d5	80	25 - 105	11/12/11 03:15	11/14/11 15:01	1
2-Fluorophenol	73	39 - 103	11/12/11 03:15	11/14/11 15:01	1
2,4,6-Tribromophenol	73	35 - 124	11/12/11 03:15	11/14/11 15:01	1

Lab Sample ID: LCS 180-20532/2-A

Matrix: Solid

Analysis Batch: 20884

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 20532

Analysis Daten. 20004	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4,5-Tetrachlorobenzene	6.67	4.81		mg/Kg		72	30 - 125
Acenaphthene	6.67	5.03		mg/Kg		75	47 - 104
Acetophenone	6.67	4.99		mg/Kg		75	30 _ 150
Acenaphthylene	6.67	5.22		mg/Kg		78	49 - 114
Anthracene	6.67	4.96		mg/Kg		74	45 - 112
Benzo[a]anthracene	6.67	5.56		mg/Kg		83	47 _ 110
Benzo[a]pyrene	6.67	5.48		mg/Kg		82	47 - 112
Benzo[b]fluoranthene	6.67	5.12		mg/Kg		77	41 - 107
Benzo[g,h,i]perylene	6.67	5.68		mg/Kg		85	38 - 126
Benzo[k]fluoranthene	6.67	4.99		mg/Kg		75	44 - 115
Bis(2-chloroethyl)ether	6.67	4.72		mg/Kg		71	38 - 99
Bis(2-chloroethoxy)methane	6.67	5.05		mg/Kg		76	44 - 101
2,2'-oxybis[1-chloropropane]	6.67	4.53		mg/Kg		68	36 - 101
Bis(2-ethylhexyl) phthalate	6.67	5.39		mg/Kg		81	40 - 122
4-Bromophenyl phenyl ether	6.67	5.15		mg/Kg		77	47 _ 110
Butyl benzyl phthalate	6.67	5.73		mg/Kg		86	41 - 118
Carbazole	6.67	4.79		mg/Kg		72	45 - 114
4-Chloroaniline	6.67	5.14		mg/Kg		77	25 _ 108
2-Chloronaphthalene	6.67	4.71		mg/Kg		71	46 - 101
4-Chlorophenyl phenyl ether	6.67	4.95		mg/Kg		74	47 _ 109
Chrysene	6.67	5.24		mg/Kg		79	46 - 111
Dibenz(a,h)anthracene	6.67	5.59		mg/Kg		84	39 - 127

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20532/2-A

Matrix: Solid

Analysis Batch: 20884

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Di-n-butyl phthalate	6.67	4.98		mg/Kg		75	43 - 121	
3,3'-Dichlorobenzidine	6.67	5.58		mg/Kg		84	19 - 122	
Diethyl phthalate	6.67	5.11		mg/Kg		77	47 ₋ 115	
Dimethyl phthalate	6.67	5.00		mg/Kg		75	49 - 111	
2,4-Dinitrotoluene	6.67	5.14		mg/Kg		77	45 - 124	

Analyte	Added	Nesuit	Qualifier	Unit	D	%Rec	Limits	
Di-n-butyl phthalate	6.67	4.98		mg/Kg		75	43 - 121	
3,3'-Dichlorobenzidine	6.67	5.58		mg/Kg		84	19 - 122	
Diethyl phthalate	6.67	5.11		mg/Kg		77	47 ₋ 115	
Dimethyl phthalate	6.67	5.00		mg/Kg		75	49 - 111	
2,4-Dinitrotoluene	6.67	5.14		mg/Kg		77	45 - 124	
2,6-Dinitrotoluene	6.67	5.62		mg/Kg		84	50 - 122	
Di-n-octyl phthalate	6.67	5.37		mg/Kg		81	33 - 129	
Fluoranthene	6.67	5.07		mg/Kg		76	40 - 120	
Fluorene	6.67	5.01		mg/Kg		75	46 - 109	
Hexachlorobenzene	6.67	5.20		mg/Kg		78	47 - 108	
Hexachlorobutadiene	6.67	4.96		mg/Kg		74	43 - 107	
Hexachlorocyclopentadiene	6.67	4.88		mg/Kg		73	23 _ 129	
Hexachloroethane	6.67	4.78		mg/Kg		72	37 ₋ 97	
Indeno[1,2,3-cd]pyrene	6.67	5.29		mg/Kg		79	41 - 125	
Isophorone	6.67	5.06		mg/Kg		76	47 - 110	
2-Methylnaphthalene	6.67	5.09		mg/Kg		76	45 - 100	
Naphthalene	6.67	5.08		mg/Kg		76	43 - 100	
2-Nitroaniline	6.67	5.13		mg/Kg		77	45 - 117	
3-Nitroaniline	6.67	5.40		mg/Kg		81	34 - 122	
4-Nitroaniline	6.67	5.16		mg/Kg		77	38 - 123	
Nitrobenzene	6.67	4.89					43 - 104	
	6.67	4.69		mg/Kg		73 74		
N-Nitrosodi-n-propylamine				mg/Kg			42 ₋ 107 44 ₋ 111	
N-Nitrosodiphenylamine	6.67	5.17		mg/Kg		77		
Phenanthrene	6.67	4.99		mg/Kg		75	43 - 108	
Pyrene	6.67	5.43		mg/Kg		81	41 - 115	
4-Chloro-3-methylphenol	6.67	5.26		mg/Kg		79	47 - 109	
2-Chlorophenol	6.67	4.80		mg/Kg		72	40 - 101	
Aniline	6.67	5.21		mg/Kg		78	21 - 94	
2-Methylphenol	6.67	4.84		mg/Kg		73	40 - 104	
2,4-Dichlorophenol	6.67	5.13		mg/Kg		77	47 ₋ 105	
2,4-Dimethylphenol	6.67	5.06		mg/Kg		76	44 - 105	
2,4-Dinitrophenol	6.67	4.95		mg/Kg		74	10 - 146	
4,6-Dinitro-2-methylphenol	6.67	5.20		mg/Kg		78	24 ₋ 134	
2-Nitrophenol	6.67	5.19		mg/Kg		78	46 - 106	
Benzyl alcohol	6.67	4.98		mg/Kg		75	39 - 108	
4-Nitrophenol	6.67	5.19		mg/Kg		78	36 - 127	
Pentachlorophenol	6.67	4.96		mg/Kg		74	17 ₋ 122	
Phenol	6.67	4.81		mg/Kg		72	41 - 102	
2,4,5-Trichlorophenol	6.67	5.04		mg/Kg		76	48 - 108	
2,4,6-Trichlorophenol	6.67	5.33		mg/Kg		80	50 - 106	
1,1'-Biphenyl	6.67	4.86		mg/Kg		73	30 - 150	
Caprolactam	6.67	5.73		mg/Kg		86	30 - 150	
Benzaldehyde	6.67	2.55		mg/Kg		38	30 - 150	
Atrazine	6.67	8.82		mg/Kg		132	30 - 150	
Benzoic acid	6.67	5.33		mg/Kg		80	11 - 133	
Benzidine	6.67	4.19	J	mg/Kg		63	30 - 120	
1,4-Dioxane	6.67	4.52		mg/Kg		68	41 - 102	
1,2-Diphenylhydrazine(as	6.67	4.64		mg/Kg		70	43 - 113	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20532/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 20884

Lab Sample ID: 180-5679-2 MS

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20532

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	75		25 - 104
2-Fluorobiphenyl	74		35 - 105
Terphenyl-d14	82		25 - 127
Phenol-d5	79		25 - 105
2-Fluorophenol	79		39 - 103
2,4,6-Tribromophenol	88		35 - 124

Client Sample ID: B-4 (16')-11-7-11

Prep Type: Total/NA

Prep Batch: 20532

Analysis Batch: 21184 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1,2,4,5-Tetrachlorobenzene ND 7.86 6.72 mg/Kg ₩ 86 30 - 125 ₩ Acenaphthene 0.026 7.86 7.15 mg/Kg 91 47 - 104 ₩ Acetophenone ND 7.86 7.36 mg/Kg 94 30 - 150 ₽ 7.32 49 - 114 Acenaphthylene ND 7.86 mg/Kg 93 ₩ Anthracene 0.026 J 7.86 6.98 89 45 - 112 mg/Kg ₩ Benzo[a]anthracene 0.025 7.86 6.34 mg/Kg 80 47 - 110₩ Benzo[a]pyrene 0.022 J 7.86 8.08 mg/Kg 103 47 - 112 Benzo[b]fluoranthene 7.86 8.17 ₽ 104 41 _ 107 0.023 J mg/Kg ÷. 38 - 126 Benzo[g,h,i]perylene 0.017 7.86 7.36 mg/Kg 93 Benzo[k]fluoranthene ₽ 0.022 J 7.86 6.59 84 44 - 115 mg/Kg Ö Bis(2-chloroethyl)ether ND 7.86 6.81 87 38 - 99 mg/Kg ₩ 44 - 101 Bis(2-chloroethoxy)methane ND 7.86 7.28 93 mg/Kg ä 2,2'-oxybis[1-chloropropane] ND 7.86 6.63 mg/Kg 84 36 - 101 ₽ Bis(2-ethylhexyl) phthalate ND 7.86 7.72 mg/Kg 98 40 - 122 ₩ 4-Bromophenyl phenyl ether ND 7.86 7.75 mg/Kg 99 47 - 110 Butyl benzyl phthalate ND 7.86 7.58 ₽ 97 41 - 118 mg/Kg ₽ Carbazole ND 7.86 7.25 mg/Kg 92 45 - 114 ₩ 4-Chloroaniline ND 7.86 7.35 mg/Kg 93 25 - 108 2-Chloronaphthalene ND 46 - 101 7.86 6.55 mg/Kg 83 ND 7.86 Ü 47 - 109 4-Chlorophenyl phenyl ether 6.79 mg/Kg 86 Chrysene 0.030 J 7.86 6 94 mg/Kg 88 46 - 111 ä Dibenz(a,h)anthracene ND 7.86 7.39 mg/Kg 94 39 - 127 Di-n-butyl phthalate ND 7 86 7 33 ₩ 93 43 - 121 mg/Kg Ö 3,3'-Dichlorobenzidine ND 7.86 7.62 97 19 - 122 mg/Kg ₽ ND 7.86 7.47 95 47 - 115 Diethyl phthalate mg/Kg ₩ Dimethyl phthalate ND 7.86 7.34 93 49 - 111 mg/Kg ₩ 2.4-Dinitrotoluene ND 7.86 7.49 mg/Kg 95 45 - 124 ₩ 2,6-Dinitrotoluene ND 7.86 8.15 mg/Kg 104 50 - 122Di-n-octyl phthalate ND 7.86 8.86 mg/Kg ₩ 113 33 - 129 0.084 7.86 Ö 87 40 - 120 Fluoranthene 6.89 mg/Kg ₽ Fluorene 0.071 7.86 6.99 88 46 - 109 mg/Kg ₩ 7.86 ND 97 47 - 108Hexachlorobenzene 7.62 mg/Kg Hexachlorobutadiene ND 7.86 6.94 ₩ 88 43 - 107 mg/Kg ₽ ND 81 23 - 129 Hexachlorocyclopentadiene 7.86 6.38 mg/Kg 7.86 Hexachloroethane ND 6.97 mg/Kg ₩ 89 37 _ 97 ₩ Indeno[1,2,3-cd]pyrene 0.013 7.86 7.17 mg/Kg 91 41 - 125 Isophorone ND 7.86 7.22 Ö 92 47 - 110 mg/Kg

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 180-5679-2 MS

Matrix: Solid

Analysis Batch: 21184

Client Sample ID: B-4 (16')-11-7-11

Prep Type: Total/NA Prep Batch: 20532

2-Hethylnaphthalene 0.062 J 7.86 7.41 mg/kg 9 93 45-100 Naphthalene 0.028 J 7.86 7.11 mg/kg 9 09 43-100 Alvitroaniline ND 7.86 7.58 mg/kg 9 64-5117 3-Nitroaniline ND 7.86 8.11 mg/kg 9 103 34-122 4-Nitroaniline ND 7.86 8.11 mg/kg 9 63 123 4-Nitroaniline ND 7.86 7.54 mg/kg 96 38-123 Nitrobanzene ND 7.86 6.61 mg/kg 96 42-107 N-Nitrosodi-n-propylamine ND 7.86 7.37 mg/kg 90 42-107 N-Nitrosodi-n-propylamine ND 7.86 7.37 mg/kg 90 42-107 N-Nitrosodi-n-propylamine ND 7.86 8.41 mg/kg 90 42-107 N-Nitrosodi-n-propylamine ND	Analysis Batch. 21104	Sample	Sample	Spike	MS	MS				%Rec.
Naphthalene	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Nitroaniline ND 7.86 7.58 mg/kg 9 96 45.117 3-Nitroaniline ND 7.86 8.81.1 mg/kg 0 103 34.122 4-Nitroaniline ND 7.86 8.81.1 mg/kg 0 103 34.122 4-Nitroaniline ND 7.86 8.51 mg/kg 0 96 38.123 Nitrobenzene ND 7.86 6.91 mg/kg 0 88 843.104 N-Nitrosodiph-propylamine ND 7.86 8.91 mg/kg 0 107 44.111 N-Nitrosodiph-propylamine ND 7.86 8.41 mg/kg 0 107 44.111 Phenanthrene 0.18 7.86 8.11 mg/kg 0 101 43.108 Pyrene 0.055 J 7.86 7.30 mg/kg 0 101 43.108 Pyrene 0.055 J 7.86 7.30 mg/kg 0 99 47.109 2-Chlorophenol ND 7.86 6.67 mg/kg 0 99 47.109 2-Chlorophenol ND 7.86 7.88 7.75 mg/kg 0 99 47.109 2-Chlorophenol ND 7.86 7.88 mg/kg 0 95 21.94 2-Methylphenol ND 7.86 7.88 mg/kg 0 95 21.94 2-Holintophenol ND 7.86 6.62 mg/kg 0 88 47.105 2-4-Dinitrophenol ND 7.86 6.62 mg/kg 0 88 47.105 2-4-Dinitrophenol ND 7.86 6.62 mg/kg 0 88 47.105 2-4-Dinitrophenol ND 7.86 6.69 mg/kg 0 84 44.105 2-4-Dinitrophenol ND 7.86 6.69 mg/kg 0 90 40.104 4-6-Dinitro-2-methylphenol ND 7.86 6.99 mg/kg 0 84 44.105 2-4-Dinitrophenol ND 7.86 6.99 mg/kg 0 84 44.105 2-Holintophenol ND 7.86 6.99 mg/kg 0 84 44.105 2-Nitrophenol ND 7.86 6.99 mg/kg 0 84 46.106 8-Renzyl alcohol ND 7.86 6.99 mg/kg 0 84 46.106 8-Renzyl alcohol ND 7.86 6.99 mg/kg 0 89 39.108 4-Nitrophenol ND 7.86 6.99 mg/kg 0 89 47.102 2-4-S-Trichlorophenol ND 7.86 6.99 mg/kg 0 89 41.102 2-4-S-Trichlorophenol ND 7.86 6.99 mg/kg 0 91 39.108 4-Nitrophenol ND 7.86 6.99 mg/kg 0 91 39.108 4-Nitrophenol ND 7.86 6.99 mg/kg 0 91 39.108 4-Nitrophenol ND 7.86 6.99 mg/kg 0 91 39.109 4-Nitrophenol ND 7.8	2-Methylnaphthalene	0.062	J	7.86	7.41		mg/Kg	-	93	45 - 100
3-Nitroaniline ND 7.86 8.11 mg/Kg 9 96 38 123 4-Nitroaniline ND 7.86 7.54 mg/Kg 9 96 38 123 Nitrobenzene ND 7.86 6.91 mg/Kg 9 88 34 1-20 Nitrobenzene ND 7.86 6.91 mg/Kg 9 88 34 1-04 N-Nitrosodi-p-propylamine ND 7.86 6.93 mg/Kg 9 44 2.107 N-Nitrosodi-p-propylamine ND 7.86 8.41 mg/Kg 9 107 44.111 Phenanthrene 0.18 7.86 8.41 mg/Kg 9 101 43 108 Pyrene 0.055 J 7.86 7.30 mg/Kg 9 22 41.115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 9 99 47 109 2-Chlorophenol ND 7.86 6.67 mg/Kg 9 99 47 109 2-Chlorophenol ND 7.86 6.67 mg/Kg 9 95 40.101 Anilline ND 7.86 7.88 mg/Kg 9 90 40.104 2-Methylphenol ND 7.86 6.67 mg/Kg 9 95 40.101 Anilline ND 7.86 6.68 mg/Kg 9 90 40.104 2-4-Dintophenol ND 7.86 6.92 mg/Kg 9 90 40.104 3-4-Dintophenol ND 7.86 6.93 mg/Kg 9 90 40.104 4-Dintophenol ND 7.86 6.93 mg/Kg 9 90 10.146 4-Dintophenol ND 7.86 6.93 mg/Kg 9 90 10.150 4-Dintophenol ND 7.86 6.93 mg/Kg 9 90 10.150 4-Dintophenol ND 7.86 7.93 mg/Kg 9 90 10.150 4-Dintophenol ND 7.86 7.93 mg/Kg 9 90 10.150 4-Dintophenol ND 7.86 7.93 mg	Naphthalene	0.028	J	7.86	7.11		mg/Kg	₽	90	43 - 100
4-Nitroaniline ND 7.86 7.54 mg/Kg 8 96 38.123 Nitrobenzene ND 7.86 6.91 mg/Kg 9 94 42.107 N-Nitrosodi-n-propylamine ND 7.86 7.37 mg/Kg 9 94 42.107 N-Nitrosodi-n-propylamine ND 7.86 8.41 mg/Kg 9 94 42.107 N-Nitrosodi-n-propylamine ND 7.86 8.41 mg/Kg 9 107 44.111 Phenanthrene 0.18 7.86 8.11 mg/Kg 9 101 43.108 Pyrene 0.055 J 7.86 7.30 mg/Kg 9 92 41.115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 9 92 41.116 4-Chloro-3-methylphenol ND 7.86 6.67 mg/Kg 9 95 21.94 4-Chloro-3-methylphenol ND 7.86 6.67 mg/Kg 9 95 21.94 2-Methylphenol ND 7.86 6.92 mg/Kg 9 90 40.104 2-4-Dichlorophenol ND 7.86 6.92 mg/Kg 9 90 40.104 2-4-Dichlorophenol ND 7.86 6.92 mg/Kg 9 10 10.146 4-C-Dintro-2-methylphenol ND 7.86 6.63 mg/Kg 9 10 10.146 4-C-Dintro-2-methylphenol ND 7.86 6.59 mg/Kg 9 10 10.146 4-C-Dintro-2-meth	2-Nitroaniline	ND		7.86	7.58		mg/Kg	₽	96	45 - 117
Nitrobenzene ND 7.86 6.91 mg/Kg 8 88 43.104 N-Nitrosodi-n-propylamine ND 7.86 7.37 mg/Kg 0 94 42.107 N-Nitrosodi-n-propylamine ND 7.86 8.41 mg/Kg 0 107 44.111 Phenanthrene 0.18 7.86 8.41 mg/Kg 0 107 44.111 Phenanthrene 0.055 J 7.86 8.41 mg/Kg 0 107 44.111 Phenanthrene 0.055 J 7.86 8.11 mg/Kg 0 92 41.115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 0 99 47.109 2-Chlorophenol ND 7.86 6.67 mg/Kg 0 99 47.109 2-Chlorophenol ND 7.86 6.67 mg/Kg 0 95 21.94 2-Methylphenol ND 7.86 6.67 mg/Kg 0 95 21.94 2-Methylphenol ND 7.86 6.92 mg/Kg 0 90 40.104 2,4-Dichlorophenol ND 7.86 6.63 mg/Kg 0 90 40.104 2,4-Dichlorophenol ND 7.86 6.63 mg/Kg 0 90 40.104 2,4-Dichlorophenol ND 7.86 6.63 mg/Kg 0 10 10.146 4-Chlintro-2-methylphenol ND 7.86 6.63 mg/Kg 0 10 10.146 4-Chlintro-2-methylphenol ND 7.86 6.59 mg/Kg 0 10 10.146 4-Nitrophenol ND 7.86 7.44 mg/Kg 0 19 24.134 2-Nitrophenol ND 7.86 7.44 mg/Kg 0 19 24.134 2-Nitrophenol ND 7.86 6.59 mg/Kg 0 73 36-127 Phenol ND 7.86 7.44 mg/Kg 0 73 36-127 Phenol ND 7.86 7.44 mg/Kg 0 73 36-127 Phenol ND 7.86 6.69 mg/Kg 0 74 17.122 Phenol ND 7.86 6.69 mg/Kg 0 75 30-150 Renzyl alcohol ND 7.86 7.86 0.562 mg/Kg 0 71 48.108 2-4,6-Trichlorophenol ND 7.86 7.86 0.562 mg/Kg 0 71 48.108 2-4,6-Trichlorophenol ND 7.86 7.86 0.561 mg/Kg 0 71 48.108 2-4,6-Trichlorophenol ND 7.86 7.86 mg/Kg 0 71 18.108 Renzaldehyde ND 7.86 7.86 mg/Kg 0 71 18.108 Renzaldehyde ND 7.86 7.86 mg/Kg 0 71 18.108 Renzaldehyde ND 7.86 7.86 mg/Kg 0 71 11.133 Renzaldene ND 7.86 ND 7.86 mg/Kg 0 71 11.133 Renzaldene ND 7.86 ND 7.86 mg/Kg 0 71 11.133	3-Nitroaniline	ND		7.86	8.11		mg/Kg	₽	103	34 - 122
N-Nitrosodi-p-propylamine ND 7.86 7.37 mg/Kg 94 42 - 107 N-Nitrosodi-p-propylamine ND 7.86 8.41 mg/Kg 0 107 44 . 111 Phenanthrene 0.18 7.86 8.41 mg/Kg 0 101 43 . 108 Pyrene 0.055 J 7.86 7.30 mg/Kg 9 92 41 . 115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 9 99 47 - 109 2-Chlorophenol ND 7.86 6.67 mg/Kg 9 99 47 - 109 2-Chlorophenol ND 7.86 7.86 mg/Kg 9 95 21 . 94 2-Methylphenol ND 7.86 7.88 mg/Kg 9 90 40 . 104 2-4-Dichlorophenol ND 7.86 7.88 mg/Kg 9 90 40 . 104 2-4-Dichlorophenol ND 7.86 6.63 mg/Kg 9 90 40 . 104 2-4-Dichlorophenol ND 7.86 6.63 mg/Kg 9 88 47 . 105 2-4-Dimitrophenol ND 7.86 6.63 mg/Kg 9 88 47 . 105 2-4-Dimitrophenol ND 7.86 6.63 mg/Kg 9 88 47 . 105 2-4-Dimitrophenol ND 7.86 8.00 F mg/Kg 9 10 10 . 146 4-C-Dinitro-2-methylphenol ND 7.86 8.59 JF mg/Kg 9 19 24 . 134 2-Nitrophenol ND 7.86 7.44 mg/Kg 9 19 24 . 134 2-Nitrophenol ND 7.86 7.44 mg/Kg 9 19 24 . 134 2-Nitrophenol ND 7.86 7.44 mg/Kg 9 19 24 . 134 4-Nitrophenol ND 7.86 5.77 mg/Kg 9 73 36 . 127 Phenol ND 7.86 5.61 mg/Kg 9 71 48 . 108 2-4-Diritrophenol ND 7.86 6.698 mg/Kg 9 89 41 . 102 2-4-S-Trichlorophenol ND 7.86 6.698 mg/Kg 9 89 41 . 102 2-4-S-Trichlorophenol ND 7.86 6.74 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 6.74 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 6.79 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 6.79 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 48 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 108 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 30 . 150 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 30 . 150 2-4-S-Trichlorophenol ND 7.86 7.86 mg/Kg 9 71 18 . 30 . 150 2-4-S-Trichlorophenol ND 7.86 ND F mg/Kg 9 71 18 . 30 . 150 2-4-S-Trichlorophenol ND	4-Nitroaniline	ND		7.86	7.54		mg/Kg	₽	96	38 - 123
N-Nitrosodiphenylamine ND 7.86 8.41 mg/Kg 3 107 44 - 111 Phenanthrene 0.18 7.86 8.41 mg/Kg 3 107 44 - 111 Phenanthrene 0.055 J 7.86 7.30 mg/Kg 3 92 41 - 115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 3 99 47 - 109 2-Chlorophenol ND 7.86 6.67 mg/Kg 3 85 40 - 101 Aniline ND 7.86 7.48 F mg/Kg 3 85 40 - 101 Aniline ND 7.86 7.48 F mg/Kg 3 95 21 - 94 2-Methylphenol ND 7.86 7.88 mg/Kg 3 90 40 - 104 2-Methylphenol ND 7.86 6.63 mg/Kg 3 88 47 - 105 2-4-Dinitrophenol ND 7.86 6.63 mg/Kg 3 88 47 - 105 2-4-Dinitrophenol ND 7.86 6.63 mg/Kg 3 88 47 - 105 2-4-Dinitrophenol ND 7.86 6.63 mg/Kg 3 88 47 - 105 2-4-Dinitrophenol ND 7.86 6.63 mg/Kg 3 88 44 - 105 2-4-Dinitrophenol ND 7.86 ND F mg/Kg 3 0 10 - 146 4-6-Dinitro-2-methylphenol ND 7.86 6.59 mg/Kg 3 84 44 - 105 2-4-Dinitrophenol ND 7.86 6.59 mg/Kg 3 84 44 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 3 95 39 - 108 4-Nitrophenol ND 7.86 7.44 mg/Kg 3 7 17 - 122 Phenol ND 7.86 5.57 mg/Kg 3 7 17 - 122 Phenol ND 7.86 6.59 mg/Kg 3 89 41 - 102 2-4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 3 89 41 - 102 2-4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 3 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 3 89 41 - 102 2-4,5-Trichlorophenol ND 7.86 6.71 mg/Kg 3 60 50 - 106 1-11-Biphenyl ND 7.86 6.71 mg/Kg 3 60 50 - 106 1-11-Biphenyl ND 7.86 6.71 mg/Kg 3 60 50 - 106 1-11-Biphenyl ND 7.86 6.71 mg/Kg 3 60 50 - 106 1-11-Biphenyl ND 7.86 6.71 mg/Kg 3 63 30 - 150 Benzaldehyde ND 7.86 7.39 mg/Kg 4 44 30 - 150 Benzaldehyde ND 7.86 7.39 mg/Kg 3 185 30 - 150 Benzaldehyde ND 7.86 7.86 ND F mg/Kg 3 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 3 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 3 118 30 - 120 1-1-Dioxane ND 7.86 ND F mg/Kg 3 118 30 - 120	Nitrobenzene	ND		7.86	6.91		mg/Kg	₽	88	43 - 104
Phenanthrene 0.18 7.86 8.11 mg/kg 0 101 43 - 108	N-Nitrosodi-n-propylamine	ND		7.86	7.37		mg/Kg	₽	94	42 - 107
Pyrene 0.055 J 7.86 7.30 mg/Kg 9 41.115 4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 9 99 47.109 2-Chlorophenol ND 7.86 6.67 mg/Kg 9 95 21.94 2-Methylphenol ND 7.86 7.48 F mg/Kg 9 90 40.104 2-Methylphenol ND 7.86 6.92 mg/Kg 9 90 40.104 2-Methylphenol ND 7.86 6.92 mg/Kg 9 84 44.105 2-4-Dintlorophenol ND 7.86 6.63 mg/Kg 9 84 44.105 2-4-Dintlorophenol ND 7.86 ND F mg/Kg 0 10.146 4-6-Dintlorophenol ND 7.86 1.52 JF mg/Kg 0 10.146 4-6-Dintlorophenol ND 7.86 6.59 mg/Kg 0 10.146 <td< td=""><td>N-Nitrosodiphenylamine</td><td>ND</td><td></td><td>7.86</td><td>8.41</td><td></td><td>mg/Kg</td><td>₩</td><td>107</td><td>44 - 111</td></td<>	N-Nitrosodiphenylamine	ND		7.86	8.41		mg/Kg	₩	107	44 - 111
4-Chloro-3-methylphenol ND 7.86 7.75 mg/Kg 9 47 109 2-Chlorophenol ND 7.86 6.67 mg/Kg 9 47 109 2-Chlorophenol ND 7.86 7.48 F mg/Kg 9 95 21 - 94 2-Methylphenol ND 7.86 7.08 mg/Kg 9 90 40 - 104 2-M-Direltylphenol ND 7.86 6.92 mg/Kg 9 88 47 - 105 2-4-Direltylphenol ND 7.86 6.92 mg/Kg 9 84 44 - 105 2-4-Direltylphenol ND 7.86 6.92 mg/Kg 9 84 44 - 105 2-4-Direltylphenol ND 7.86 ND F mg/Kg 9 10 10 146 4-6-Direltylphenol ND 7.86 1.52 JF mg/Kg 9 19 24 - 134 2-4-Direltylphenol ND 7.86 6.59 mg/Kg 9 89 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 9 39 - 108 </td <td>Phenanthrene</td> <td>0.18</td> <td></td> <td>7.86</td> <td>8.11</td> <td></td> <td>mg/Kg</td> <td>₽</td> <td>101</td> <td>43 - 108</td>	Phenanthrene	0.18		7.86	8.11		mg/Kg	₽	101	43 - 108
2-Chlorophenol ND 7.86 6.67 mg/Kg 85 40 - 101 Aniline ND 7.86 7.48 F mg/Kg 95 21 - 94 2-Methylphenol ND 7.86 7.86 7.08 mg/Kg 95 21 - 94 2-Methylphenol ND 7.86 7.08 mg/Kg 90 40 - 104 2-4-Dichlorophenol ND 7.86 6.92 mg/Kg 90 40 - 105 2-4-Dichlorophenol ND 7.86 6.92 mg/Kg 88 47 - 105 2-4-Dinitrophenol ND 7.86 6.63 mg/Kg 9 84 44 - 105 2-4-Dinitrophenol ND 7.86 8.0 F mg/Kg 9 0 10 - 146 4-6-Dinitro-2-methylphenol ND 7.86 8.59 mg/Kg 9 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 9 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 9 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 9 95 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 9 7 3 36 - 127 Pentachlorophenol ND 7.86 5.77 mg/Kg 9 7 17 - 122 Phenol ND 7.86 6.56 F mg/Kg 9 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2-4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2-4,6-Trichlorophenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2-4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 9 71 48 - 108 2-4,6-Trichlorophenol ND 7.86 7.39 mg/Kg 9 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 43 30 - 150 Caprolactam ND 7.86 3.46 mg/Kg 9 44 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 185 30 - 150	Pyrene	0.055	J	7.86	7.30		mg/Kg	₩	92	41 - 115
Aniline ND 7.86 7.48 F mg/Kg 95 21 - 94 2-Methylphenol ND 7.86 7.08 mg/Kg 90 40 - 104 2,4-Dichlorophenol ND 7.86 6.92 mg/Kg 88 47 - 105 2,4-Dimethylphenol ND 7.86 6.63 mg/Kg 9 88 47 - 105 2,4-Dimethylphenol ND 7.86 6.63 mg/Kg 9 84 44 - 105 2,4-Dimitrophenol ND 7.86 ND F mg/Kg 9 10 10 - 146 4,6-Dinitro-2-methylphenol ND 7.86 1.52 JF mg/Kg 9 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 9 84 46 - 106 Benzyl alcohol ND 7.86 6.59 mg/Kg 9 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 9 95 39 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 9 73 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 9 71 17 - 122 Phenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 9 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 7.39 mg/Kg 9 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 7.39 mg/Kg 9 89 41 - 102 2,4,6-Trichlorophenol ND 7.86 7.39 mg/Kg 9 89 41 - 102 2,4,6-Trichlorophenol ND 7.86 7.39 mg/Kg 9 80 50 - 106 1,1'-Biphenyl ND 7.86 7.39 mg/Kg 9 4 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 4 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 4 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 9 118 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 9 118 30 - 150 Benzaldene ND 7.86 ND F mg/Kg 9 118 30 - 120 1,4-Dioxane ND 7.86 ND F mg/Kg 9 118 30 - 120	4-Chloro-3-methylphenol	ND		7.86	7.75		mg/Kg	₩	99	47 - 109
2-Methylphenol ND 7.86 7.08 mg/Kg 90 40 - 104 2,4-Dichlorophenol ND 7.86 6.92 mg/Kg 88 47 - 105 2,4-Dinitrophenol ND 7.86 6.92 mg/Kg 88 47 - 105 2,4-Dinitrophenol ND 7.86 6.63 mg/Kg 84 44 - 105 2,4-Dinitrophenol ND 7.86 ND F mg/Kg 0 10 10 - 146 4,6-Dinitro-2-methylphenol ND 7.86 1.52 JF mg/Kg 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 95 39 - 108 8-Denzyl alcohol ND 7.86 7.44 mg/Kg 95 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 97 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 97 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 97 39 - 108 4-Nitrophenol ND 7.86 6.98 mg/Kg 97 37 17 - 122 Phenol ND 7.86 6.98 mg/Kg 98 41 - 102 2,4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 98 41 - 102 2,4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 96 50 - 106 1,11-Biphenyl ND 7.86 6.71 mg/Kg 98 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 98 30 - 150 Caprolactam ND 7.86 3.46 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 91 185 30 - 150	2-Chlorophenol	ND		7.86	6.67		mg/Kg	₩	85	40 - 101
2.4-Dichlorophenol ND 7.86 6.92 mg/Kg 88 47 - 105 2.4-Dinethylphenol ND 7.86 6.63 mg/Kg 88 47 - 105 2.4-Dinitrophenol ND 7.86 6.63 mg/Kg 84 44 - 105 2.4-Dinitrophenol ND 7.86 ND F mg/Kg 9 0 10 - 146 4.6-Dinitro-2-methylphenol ND 7.86 1.52 J F mg/Kg 9 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 9 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 9 5 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 9 73 36 - 127 Pentachlorophenol ND 7.86 5.77 mg/Kg 9 73 36 - 127 Pentachlorophenol ND 7.86 6.98 mg/Kg 9 71 17 - 122 Phenol ND 7.86 6.98 mg/Kg 9 71 17 - 122 Phenol ND 7.86 5.61 mg/Kg 71 48 - 108 2.4,6-Trichlorophenol ND 7.86 5.61 mg/Kg 9 71 48 - 108 2.4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 9 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 44 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 44 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 9 185 30 - 150 Atrazine ND 7.86 ND F mg/Kg 9 118 30 - 120 1,4-Dioxane ND 7.86 9.28 mg/Kg 9 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	Aniline	ND		7.86	7.48	F	mg/Kg	☼	95	21 ₋ 94
2,4-Dimthylphenol ND 7.86 6.63 mg/Kg 84 44 105 2,4-Dinitrophenol ND 7.86 ND F mg/Kg 0 10 10 146 4,6-Dinitro-2-methylphenol ND 7.86 1.52 JF mg/Kg 0 19 24 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 0 19 24 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 0 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 0 95 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 0 73 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 0 71 17 - 122 Phenol ND 7.86 6.98 mg/Kg 0 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 0 71 48 - 108 2,4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 0 70 17 - 122 2,4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 0 70 10 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 0 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 0 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 0 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 0 44 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 0 185 30 - 150 Benzaldehyde ND 7.86 ND F mg/Kg 0 11 1.33 Benzidine ND 7.86 ND F mg/Kg 0 11 18 30 - 120 1,4-Dioxane ND 7.86 9.28 mg/Kg 0 11 18 30 - 120	2-Methylphenol	ND		7.86	7.08		mg/Kg	☼	90	40 - 104
2,4-Dinitrophenol ND 7.86 ND F mg/Kg 0 10 10 146 4,6-Dinitro-2-methylphenol ND 7.86 1.52 J F mg/Kg 0 19 24 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 0 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 0 95 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 0 73 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 0 70 17 - 122 Phenol ND 7.86 0.562 F mg/Kg 0 70 17 - 122 Phenol ND 7.86 6.98 mg/Kg 0 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 6.98 mg/Kg 0 71 48 - 108 2,4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 0 70 17 - 122 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 0 70 106 1,1'-Biphenyl ND 7.86 7.39 mg/Kg 0 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 0 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 0 94 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 0 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 115 30 - 150 Benzoic acid ND 7.86 9.28 mg/Kg 0 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 0 118 30 - 120	2,4-Dichlorophenol	ND		7.86	6.92		mg/Kg	₩	88	47 ₋ 105
4,6-Dinitro-2-methylphenol ND 7.86 1.52 J F mg/Kg 3 19 24 - 134 2-Nitrophenol ND 7.86 6.59 mg/Kg 3 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 3 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 3 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 3 36 - 127 Phenol ND 7.86 6.98 mg/Kg 3 9 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 39 41 - 102 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 44 30 - 150 Benzoic acid ND	2,4-Dimethylphenol	ND		7.86	6.63		mg/Kg	☼	84	44 - 105
2-Nitrophenol ND 7.86 6.59 mg/Kg 9 84 46 - 106 Benzyl alcohol ND 7.86 7.44 mg/Kg 9 95 39 - 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 7 33 6 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 8 9 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 7 10 48 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 7 10 48 - 108 2,4,6-Trichlorophenol ND 7.86 6.71 mg/Kg 8 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 9 430 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 9 44 30 - 150 Benzaldehyde ND 7.86 14.5 F mg/Kg 9 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 9 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 7 1 41 - 102	2,4-Dinitrophenol	ND		7.86	ND	F	mg/Kg	☼	0	10 - 146
Benzyl alcohol ND 7.86 7.44 mg/Kg 95 39 108 4-Nitrophenol ND 7.86 5.77 mg/Kg 73 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 7 11 48 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 7 10 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 85 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 94 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 9 185 30 - 150 Benzoic acid ND 7.86 9.28 mg/Kg 9 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	4,6-Dinitro-2-methylphenol	ND		7.86	1.52	JF	mg/Kg	₽	19	24 - 134
4-Nitrophenol ND 7.86 5.77 mg/Kg 73 36 - 127 Pentachlorophenol ND 7.86 0.562 F mg/Kg 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 7 148 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 7 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 7 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 7 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 7 148 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 7 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 7 185 30 - 150 Benzidine ND 7.86 9.28 mg/Kg 7 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 7 141 - 102	2-Nitrophenol	ND		7.86	6.59		mg/Kg	₽	84	46 - 106
Pentachlorophenol ND 7.86 0.562 F mg/Kg 7 17 - 122 Phenol ND 7.86 6.98 mg/Kg 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 71 48 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 94 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 9 185 30 - 150 Benzaldehyde ND 7.86 9.28 mg/Kg 9 118 30 - 150 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 71 41 - 102	Benzyl alcohol	ND		7.86	7.44		mg/Kg	₽	95	39 - 108
Phenol ND 7.86 6.98 mg/Kg 89 41 - 102 2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 71 48 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 44 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	4-Nitrophenol	ND		7.86	5.77		mg/Kg	₽	73	36 - 127
2,4,5-Trichlorophenol ND 7.86 5.61 mg/Kg 71 48 - 108 2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	Pentachlorophenol	ND		7.86	0.562	F	mg/Kg	₽	7	17 - 122
2,4,6-Trichlorophenol ND 7.86 4.74 mg/Kg 60 50 - 106 1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	Phenol	ND		7.86	6.98		mg/Kg	₽	89	41 - 102
1,1'-Biphenyl ND 7.86 6.71 mg/Kg 85 30 - 150 Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	2,4,5-Trichlorophenol	ND		7.86	5.61		mg/Kg	₽	71	48 - 108
Caprolactam ND 7.86 7.39 mg/Kg 94 30 - 150 Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	2,4,6-Trichlorophenol	ND		7.86	4.74		mg/Kg	₽	60	50 - 106
Benzaldehyde ND 7.86 3.46 mg/Kg 44 30 - 150 Atrazine ND 7.86 14.5 F mg/Kg 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	1,1'-Biphenyl	ND		7.86	6.71		mg/Kg	₽	85	30 - 150
Atrazine ND 7.86 14.5 F mg/Kg 4 185 30 - 150 Benzoic acid ND 7.86 ND F mg/Kg 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg 71 41 - 102	Caprolactam	ND		7.86	7.39		mg/Kg	₽	94	30 - 150
Benzoic acid ND 7.86 ND F mg/Kg © 0 11 - 133 Benzidine ND 7.86 9.28 mg/Kg © 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg © 71 41 - 102	Benzaldehyde	ND		7.86	3.46		mg/Kg	₽	44	30 - 150
Benzidine ND 7.86 9.28 mg/Kg * 118 30 - 120 1,4-Dioxane ND 7.86 5.62 mg/Kg * 71 41 - 102	Atrazine	ND		7.86	14.5	F	mg/Kg	₽	185	30 - 150
1,4-Dioxane ND 7.86 5.62 mg/Kg * 71 41 - 102	Benzoic acid	ND		7.86	ND	F	mg/Kg	₽	0	11 ₋ 133
,, 2000	Benzidine	ND		7.86	9.28		mg/Kg	₽	118	30 - 120
1,2-Diphenylhydrazine(as ND 7.86 7.74 mg/Kg \$\text{98} 43 - 113	1,4-Dioxane	ND		7.86	5.62		mg/Kg	₽	71	41 - 102
	1,2-Diphenylhydrazine(as	ND		7.86	7.74		mg/Kg	₽	98	43 - 113

ИS	MS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	89		25 - 104
2-Fluorobiphenyl	88		35 - 105
Terphenyl-d14	94		25 - 127
Phenol-d5	96		25 - 105
2-Fluorophenol	85		39 - 103
2,4,6-Tribromophenol	66		35 - 124

Lab Sample ID: 180-5679-2 MSD

Matrix: Solid

Azobenzene)

Analysis Batch: 20884

Client Sampl	e ID:	B-4 ((16')-11-7-11	
	_	_		

Prep Type: Total/NA Prep Batch: 20532

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,2,4,5-Tetrachlorobenzene	ND		7.86	5.30		mg/Kg	\$	67	30 - 125	24	25	
Acenanhthene	0.026	J	7.86	5 54		ma/Ka	≎	70	47 _ 104	25	40	

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 180-5679-2 MSD

Matrix: Solid

Analysis Batch: 20884

Client Sample ID: B-4 (16')-11-7-11

Prep Type: Total/NA

. Top Type	· iotamita
Prep Bat	tch: 20532
/ Doc	DDD

7 											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetophenone	ND		7.86	5.40		mg/Kg	₩	69	30 - 150	31	40
Acenaphthylene	ND		7.86	5.75		mg/Kg	₿	73	49 - 114	24	38
Anthracene	0.026	J	7.86	5.36		mg/Kg	₩	68	45 - 112	26	42
Benzo[a]anthracene	0.025	J	7.86	5.62		mg/Kg	₩	71	47 - 110	12	40
Benzo[a]pyrene	0.022	J	7.86	5.85		mg/Kg	₿	74	47 - 112	32	42
Benzo[b]fluoranthene	0.023	J	7.86	5.03		mg/Kg	☼	64	41 - 107	48	53
Benzo[g,h,i]perylene	0.017	J	7.86	6.01		mg/Kg	₩	76	38 - 126	20	43
Benzo[k]fluoranthene	0.022	J	7.86	5.56		mg/Kg	₩	70	44 - 115	17	44
Bis(2-chloroethyl)ether	ND		7.86	5.25		mg/Kg	☼	67	38 - 99	26	43
Bis(2-chloroethoxy)methane	ND		7.86	5.54		mg/Kg	₩	70	44 - 101	27	36
2,2'-oxybis[1-chloropropane]	ND		7.86	5.05		mg/Kg	₩	64	36 - 101	27	41
Bis(2-ethylhexyl) phthalate	ND		7.86	5.66		mg/Kg	₩	72	40 - 122	31	41
4-Bromophenyl phenyl ether	ND		7.86	5.78		mg/Kg	₩	74	47 - 110	29	46

Butyl benzyl phthalate ND 75 41 - 118 41 7.86 5.86 mg/Kg 26 Carbazole 7.86 ₩ 70 45 - 114 36 ND 5.47 mg/Kg 28 ₽ 4-Chloroaniline ND 7.86 5.55 71 25 - 108 28 36 mg/Kg 2-Chloronaphthalene ND 7.86 5.24 ₩ 67 46 - 101 40 mg/Kg 22 ₩ 4-Chlorophenyl phenyl ether ND 47 - 109 7 86 5 20 mg/Kg 66 27 39 0.030 7.86 5.38 Ö 68 46 - 111 25 39 Chrysene mg/Kg ₽ 75 ND 7.86 5.91 39 _ 127 22 45 Dibenz(a,h)anthracene mg/Kg ₩ Di-n-butyl phthalate ND 7.86 5.47 70 43 - 121 29 38 mg/Kg ₩ 3.3'-Dichlorobenzidine ND 7.86 5.83 74 19 - 122 27 40 mg/Kg ₽ Diethyl phthalate ND 7.86 5.60 mg/Kg 71 47 - 115 29 38 Dimethyl phthalate ND 7.86 5.59 ₩ 49 _ 111 27 37 mg/Kg 71 ₽ 2,4-Dinitrotoluene ND 7.86 5.70 mg/Kg 73 45 - 124 27 41 2,6-Dinitrotoluene ND 7.86 6.30 Ö 80 50 - 122 26 40 mg/Kg Di-n-octyl phthalate ₩ ND 7.86 33 - 129 5.84 mg/Kg 74 41 41 Fluoranthene 0.084 7.86 5.85 ₩ 73 40 - 120 36 mg/Kg 16 Fluorene 0.071 7.86 5.43 mg/Kg 68 46 - 109 25 40 Hexachlorobenzene ₩ ND 7.86 5.73 mg/Kg 73 47 - 108 28 43 ₩ ND 7.86 43 - 107 Hexachlorobutadiene 5.42 mg/Kg 69 25 39 ₽ Hexachlorocyclopentadiene ND 7.86 4.93 mg/Kg 63 23 - 129 26 49 ₽ Hexachloroethane ND 7.86 5.20 66 37 - 97 29 48 mg/Kg ₩ Indeno[1,2,3-cd]pyrene 0.013 7.86 5.67 72 41 - 125 23 47 mg/Kg ₽ ND 7.86 5.43 69 47 - 110 28 37 Isophorone mg/Kg ₩ 2-Methylnaphthalene 0.062 J 7.86 5.54 mg/Kg 70 45 - 100 29 40 ₩ Naphthalene 0.028 7.86 5.41 mg/Kg 68 43 - 100 27 32 ₽ 2-Nitroaniline ND 7.86 5.91 75 45 - 117 25 42 mg/Kg ND Ö 3-Nitroaniline 7.86 6.15 mg/Kg 78 34 - 122 27 39 ₩ 4-Nitroaniline ND 7.86 5.70 73 38 - 123 40 mg/Kg 28 ₽ Nitrobenzene ND 7.86 5.35 68 43 - 104 25 33 mg/Kg ₽ N-Nitrosodi-n-propylamine NΠ 42 _ 107 7.86 5.45 69 30 43 mg/Kg N-Nitrosodiphenylamine ND 7.86 6.09 Ü 78 44 - 111 32 40 mg/Kg ₽ 71 Phenanthrene 0.18 7.86 5.80 43 108 33 39 mg/Kg ₩ Pyrene 0.055 7.86 5.40 68 41 - 115 30 43 mg/Kg ₽ ND 5.58 71 47 - 109 36 4-Chloro-3-methylphenol 7 86 mg/Kg 33 ä 2-Chlorophenol ND 7.86 5.11 mg/Kg 65 40 - 101 26 42 Aniline ND 7.86 5.53 ₩ 70 21 - 94 30 45 mg/Kg ₽ 2-Methylphenol ND 7.86 5.32 mg/Kg 68 40 - 104 28 41 ā 2,4-Dichlorophenol ND 7.86 5.21 66 47 - 105 28 35 mg/Kg

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 180-5679-2 MSD

Matrix: Solid Analysis Batch: 20884 Client Sample ID: B-4 (16')-11-7-11 Prep Type: Total/NA

Prep Batch: 20532

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dimethylphenol	ND		7.86	5.08		mg/Kg	₩	65	44 - 105	26	49
2,4-Dinitrophenol	ND		7.86	ND	F	mg/Kg	₩	0	10 - 146	NC	83
4,6-Dinitro-2-methylphenol	ND		7.86	0.893	JF	mg/Kg	₩	11	24 - 134	52	87
2-Nitrophenol	ND		7.86	4.98		mg/Kg	₩	63	46 - 106	28	39
Benzyl alcohol	ND		7.86	5.45		mg/Kg	₩	69	39 - 108	31	45
4-Nitrophenol	ND		7.86	3.92		mg/Kg	₩	50	36 - 127	38	43
Pentachlorophenol	ND		7.86	0.364	JF	mg/Kg	₩	5	17 - 122	43	52
Phenol	ND		7.86	5.11		mg/Kg	₩	65	41 - 102	31	39
2,4,5-Trichlorophenol	ND		7.86	4.05		mg/Kg	₩	51	48 - 108	32	44
2,4,6-Trichlorophenol	ND		7.86	3.73	F	mg/Kg	☼	47	50 - 106	24	42
1,1'-Biphenyl	ND		7.86	5.35		mg/Kg	₩	68	30 - 150	23	40
Caprolactam	ND		7.86	5.99		mg/Kg	₩	76	30 - 150	21	40
Benzaldehyde	ND		7.86	2.60		mg/Kg	₩	33	30 - 150	28	40
Atrazine	ND		7.86	10.7		mg/Kg	₩	136	30 - 150	31	40
Benzoic acid	ND		7.86	ND	F	mg/Kg	₽	0	11 - 133	NC	13
Benzidine	ND		7.86	6.98	J	mg/Kg	₩	89	30 - 120	28	30
1,4-Dioxane	ND		7.86	4.46		mg/Kg	₩	57	41 - 102	23	35
1,2-Diphenylhydrazine(as	ND		7.86	5.51		mg/Kg	₩	70	43 - 113	34	41

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	68		25 - 104
2-Fluorobiphenyl	70		35 - 105
Terphenyl-d14	67		25 - 127
Phenol-d5	72		25 - 105
2-Fluorophenol	65		39 - 103
2,4,6-Tribromophenol	47		35 - 124

Lab Sample ID: MB 180-20747/1-A

Matrix: Solid

Azobenzene)

Analysis Batch: 21248

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.33	0.025	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Acenaphthene	ND		0.067	0.0064	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Acetophenone	ND		0.33	0.027	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Acenaphthylene	ND		0.067	0.0076	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Anthracene	ND		0.067	0.0065	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzo[a]anthracene	ND		0.067	0.0084	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzo[a]pyrene	ND		0.067	0.0067	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzo[b]fluoranthene	ND		0.067	0.010	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzo[g,h,i]perylene	ND		0.067	0.0066	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzo[k]fluoranthene	ND		0.067	0.013	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Bis(2-chloroethyl)ether	ND		0.067	0.0090	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Bis(2-chloroethoxy)methane	ND		0.33	0.022	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
2,2'-oxybis[1-chloropropane]	ND		0.067	0.0072	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Bis(2-ethylhexyl) phthalate	ND		0.67	0.054	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
4-Bromophenyl phenyl ether	ND		0.33	0.029	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Butyl benzyl phthalate	ND		0.33	0.046	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Carbazole	ND		0.067	0.0061	mg/Kg		11/15/11 05:58	11/17/11 16:02	1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

Lab Sample ID: MB 180-20747/1-A

Matrix: Solid

Analyte

Analysis Batch: 21248

Client Sample ID: Method Blank

Dil Fac

Pr	ep Type: Total/NA
	Prep Batch: 20747

Analyzed

4-Chloroaniline	ND ND	0.33	0.027	mg/Kg	11/15/11 05:58	11/17/11 16:02	
2-Chloronaphthalene	ND	0.067	0.0070	mg/Kg	11/15/11 05:58	11/17/11 16:02	
4-Chlorophenyl phenyl ether	ND	0.33	0.037	mg/Kg	11/15/11 05:58	11/17/11 16:02	
Chrysene	ND	0.067	0.0079	mg/Kg	11/15/11 05:58	11/17/11 16:02	
Dibenz(a,h)anthracene	ND	0.067	0.0074	mg/Kg	11/15/11 05:58	11/17/11 16:02	
Di-n-butyl phthalate	ND	0.33	0.042	mg/Kg	11/15/11 05:58	11/17/11 16:02	
3,3'-Dichlorobenzidine	ND	0.33	0.035	mg/Kg	11/15/11 05:58	11/17/11 16:02	
Diethyl phthalate	ND	0.33	0.036	mg/Kg	11/15/11 05:58	11/17/11 16:02	

RL

MDL Unit

D

Prepared

4-Chloroaniline	ND	0.33	0.027	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Chloronaphthalene	ND	0.067	0.0070	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
4-Chlorophenyl phenyl ether	ND	0.33	0.037	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Chrysene	ND	0.067	0.0079	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Dibenz(a,h)anthracene	ND	0.067	0.0074	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Di-n-butyl phthalate	ND	0.33	0.042	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
3,3'-Dichlorobenzidine	ND	0.33	0.035	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Diethyl phthalate	ND	0.33	0.036	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Dimethyl phthalate	ND	0.33	0.036	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4-Dinitrotoluene	ND	0.33	0.027	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,6-Dinitrotoluene	ND	0.33	0.034	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Di-n-octyl phthalate	ND	0.33	0.035	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Fluoranthene	ND	0.067	0.0071	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Fluorene	ND	0.067	0.0088	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Hexachlorobenzene	ND	0.067	0.0071	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
3,3'-Dimethylbenzidine	ND	1.7	0.018	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Hexachlorobutadiene	ND	0.067	0.0075	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Hexachlorocyclopentadiene	ND	0.33	0.036	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Hexachloroethane	ND	0.33	0.024	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Indeno[1,2,3-cd]pyrene	ND	0.067	0.0069	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Isophorone	ND	0.33	0.025	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Methylnaphthalene	ND	0.067	0.0060	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Naphthalene	ND	0.067	0.0057	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Nitroaniline	ND	1.7	0.15	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
3-Nitroaniline	ND	1.7	0.14	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
4-Nitroaniline	ND	1.7	0.14	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Nitrobenzene	ND	0.67	0.028	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
N-Nitrosodi-n-propylamine	ND	0.067	0.0078	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
N-Nitrosodiphenylamine	ND	0.33	0.031	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Phenanthrene	ND	0.067	0.011	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Pyrene	ND	0.067	0.0067	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
4-Chloro-3-methylphenol	ND	0.33	0.031	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Chlorophenol	ND	0.33	0.027	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Aniline	ND	0.33	0.026	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Methylphenol	ND	0.33	0.023	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Methylphenol, 3 & 4	ND	0.33	0.033	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4-Dichlorophenol	ND	0.067	0.0067	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4-Dimethylphenol	ND	0.33	0.052	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4-Dinitrophenol	ND	1.7	0.40	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
4,6-Dinitro-2-methylphenol	ND	1.7	0.13	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2-Nitrophenol	ND	0.33	0.037	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Benzyl alcohol	ND	0.33	0.040	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
4-Nitrophenol	ND	1.7	0.12	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Pentachlorophenol	ND	0.33	0.030	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Phenol	ND	0.067	0.0079	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4,5-Trichlorophenol	ND	0.33	0.036	mg/Kg	11/15/11 05:58	11/17/11 16:02	1
2,4,6-Trichlorophenol	ND	0.33		mg/Kg	11/15/11 05:58	11/17/11 16:02	1
1,1'-Biphenyl	ND	0.33		mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Caprolactam	ND	1.7		mg/Kg	11/15/11 05:58	11/17/11 16:02	1
Benzaldehyde	ND	0.33	0.050	mg/Kg	11/15/11 05:58	11/17/11 16:02	1

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-20747/1-A

Matrix: Solid

Analysis Batch: 21248

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 20747

	IVID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Atrazine	ND		0.33	0.032	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzoic acid	ND		1.7	0.14	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Benzidine	ND		6.7	1.4	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
1,4-Dioxane	ND		0.67	0.038	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
1,2-Diphenylhydrazine(as	ND		0.33	0.043	mg/Kg		11/15/11 05:58	11/17/11 16:02	1
Azobenzene)									
o-Toluidine	ND		0.33	0.025	ma/Ka		11/15/11 05:58	11/17/11 16:02	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	84		25 - 104	11/15/11 05:58	11/17/11 16:02	1
2-Fluorobiphenyl	83		35 - 105	11/15/11 05:58	11/17/11 16:02	1
Terphenyl-d14	75		25 - 127	11/15/11 05:58	11/17/11 16:02	1
Phenol-d5	94		25 - 105	11/15/11 05:58	11/17/11 16:02	1
2-Fluorophenol	87		39 - 103	11/15/11 05:58	11/17/11 16:02	1
2,4,6-Tribromophenol	95		35 - 124	11/15/11 05:58	11/17/11 16:02	1

Lab Sample ID: LCS 180-20747/2-A

Matrix: Solid

Analysis Batch: 21248

Client Sample ID: Lab Control Sample Prep Type: Total/NA

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4,5-Tetrachlorobenzene	6.67	6.09		mg/Kg		91	30 - 125	
Acenaphthene	6.67	6.25		mg/Kg		94	47 - 104	
Acetophenone	6.67	5.95		mg/Kg		89	30 _ 150	
Acenaphthylene	6.67	6.50		mg/Kg		97	49 - 114	
Anthracene	6.67	6.05		mg/Kg		91	45 - 112	
Benzo[a]anthracene	6.67	6.35		mg/Kg		95	47 - 110	
Benzo[a]pyrene	6.67	6.68		mg/Kg		100	47 - 112	
Benzo[b]fluoranthene	6.67	5.67		mg/Kg		85	41 - 107	
Benzo[g,h,i]perylene	6.67	6.64		mg/Kg		100	38 - 126	
Benzo[k]fluoranthene	6.67	5.84		mg/Kg		88	44 - 115	
Bis(2-chloroethyl)ether	6.67	5.84		mg/Kg		88	38 - 99	
Bis(2-chloroethoxy)methane	6.67	6.00		mg/Kg		90	44 - 101	
2,2'-oxybis[1-chloropropane]	6.67	5.76		mg/Kg		86	36 - 101	
Bis(2-ethylhexyl) phthalate	6.67	6.21		mg/Kg		93	40 - 122	
4-Bromophenyl phenyl ether	6.67	6.14		mg/Kg		92	47 _ 110	
Butyl benzyl phthalate	6.67	6.64		mg/Kg		100	41 - 118	
Carbazole	6.67	6.13		mg/Kg		92	45 - 114	
4-Chloroaniline	6.67	6.34		mg/Kg		95	25 - 108	
2-Chloronaphthalene	6.67	6.09		mg/Kg		91	46 - 101	
4-Chlorophenyl phenyl ether	6.67	6.07		mg/Kg		91	47 - 109	
Chrysene	6.67	6.32		mg/Kg		95	46 - 111	
Dibenz(a,h)anthracene	6.67	6.71		mg/Kg		101	39 _ 127	
Di-n-butyl phthalate	6.67	6.30		mg/Kg		94	43 _ 121	
3,3'-Dichlorobenzidine	6.67	6.53		mg/Kg		98	19 - 122	
Diethyl phthalate	6.67	6.25		mg/Kg		94	47 ₋ 115	
Dimethyl phthalate	6.67	6.25		mg/Kg		94	49 - 111	
2,4-Dinitrotoluene	6.67	6.69		mg/Kg		100	45 - 124	
2,6-Dinitrotoluene	6.67	7.09		mg/Kg		106	50 - 122	
Di-n-octyl phthalate	6.67	6.51		mg/Kg		98	33 - 129	

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20747/2-A

Matrix: Solid

Analysis Batch: 21248

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 21248	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	6.67	6.45	<u> </u>	mg/Kg		97	40 - 120	
Fluorene	6.67	6.31		mg/Kg		95	46 - 109	
Hexachlorobenzene	6.67	6.05		mg/Kg		91	47 - 108	
Hexachlorobutadiene	6.67	6.35		mg/Kg		95	43 - 107	
Hexachlorocyclopentadiene	6.67	6.83		mg/Kg		102	23 - 129	
Hexachloroethane	6.67	5.98		mg/Kg		90	37 - 97	
Indeno[1,2,3-cd]pyrene	6.67	6.45		mg/Kg		97	41 - 125	
Isophorone	6.67	6.27		mg/Kg		94	47 - 110	
2-Methylnaphthalene	6.67	6.29		mg/Kg		94	45 - 100	
Naphthalene	6.67	6.29		mg/Kg		94	43 - 100	
2-Nitroaniline	6.67	6.56		mg/Kg		98	45 - 117	
3-Nitroaniline	6.67	6.77		mg/Kg		102	34 - 122	
4-Nitroaniline	6.67	6.37		mg/Kg		96	38 - 123	
Nitrobenzene	6.67	6.10		mg/Kg		92	43 - 104	
N-Nitrosodi-n-propylamine	6.67	5.81		mg/Kg		87	42 - 107	
N-Nitrosodiphenylamine	6.67	6.34		mg/Kg		95	44 - 111	
Phenanthrene	6.67	6.33		mg/Kg		95	43 - 108	
Pyrene	6.67	6.21		mg/Kg		93	41 - 115	
4-Chloro-3-methylphenol	6.67	6.41		mg/Kg		96	47 - 109	
2-Chlorophenol	6.67	6.08		mg/Kg		91	40 - 101	
Aniline	6.67	6.16		mg/Kg		92	21 - 94	
2-Methylphenol	6.67	6.04		mg/Kg		91	40 - 104	
2,4-Dichlorophenol	6.67	6.41		mg/Kg		96	47 _ 105	
2,4-Dimethylphenol	6.67	6.34		mg/Kg		95	44 - 105	
2,4-Dinitrophenol	6.67	7.47		mg/Kg		112	10 - 146	
4,6-Dinitro-2-methylphenol	6.67	6.72		mg/Kg		101	24 - 134	
2-Nitrophenol	6.67	6.66		mg/Kg		100	46 - 106	
Benzyl alcohol	6.67	6.29		mg/Kg		94	39 - 108	
4-Nitrophenol	6.67	7.34		mg/Kg		110	36 - 127	
Pentachlorophenol	6.67	6.38		mg/Kg		96	17 - 122	
Phenol	6.67	5.93		mg/Kg		89	41 - 102	
2,4,5-Trichlorophenol	6.67	6.50		mg/Kg		97	48 - 108	
2,4,6-Trichlorophenol	6.67	6.59		mg/Kg		99	50 - 106	
1,1'-Biphenyl	6.67	5.99		mg/Kg		90	30 - 150	
Caprolactam	6.67	6.78		mg/Kg		102	30 - 150	
Benzaldehyde	6.67	3.43		mg/Kg		51	30 - 150	
Atrazine	6.67	10.8	*	mg/Kg		162	30 - 150	
Benzoic acid	6.67	7.12		mg/Kg		107	11 - 133	
Benzidine	6.67	4.38	J	mg/Kg		66	30 - 120	
1,4-Dioxane	6.67	5.67		mg/Kg		85	41 - 102	
1,2-Diphenylhydrazine(as Azobenzene)	6.67	5.68		mg/Kg		85	43 - 113	

LCS L	cs
-------	----

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	93		25 - 104
2-Fluorobiphenyl	94		35 - 105
Terphenyl-d14	95		25 - 127
Phenol-d5	97		25 - 105
2-Fluorophenol	98		39 - 103

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-20747/2-A

Lab Sample ID: MB 180-21153/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 21248

Analysis Batch: 21730

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20747

LCS LCS

мв мв

Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol 35 - 124 106

> **Client Sample ID: Method Blank** Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		0.33	0.025	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Acenaphthene	ND		0.067	0.0064	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Acetophenone	ND		0.33	0.027	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Acenaphthylene	ND		0.067	0.0076	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Anthracene	ND		0.067	0.0065	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzo[a]anthracene	ND		0.067	0.0084	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzo[a]pyrene	ND		0.067	0.0067	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzo[b]fluoranthene	ND		0.067	0.010	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzo[g,h,i]perylene	ND		0.067	0.0066	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzo[k]fluoranthene	ND		0.067	0.013	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Bis(2-chloroethyl)ether	ND		0.067	0.0090	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Bis(2-chloroethoxy)methane	ND		0.33	0.022	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,2'-oxybis[1-chloropropane]	ND		0.067	0.0072	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Bis(2-ethylhexyl) phthalate	ND		0.67	0.054	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4-Bromophenyl phenyl ether	ND		0.33	0.029	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Butyl benzyl phthalate	ND		0.33	0.046	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Carbazole	ND		0.067	0.0061	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4-Chloroaniline	ND		0.33	0.027	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Chloronaphthalene	ND		0.067	0.0070	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4-Chlorophenyl phenyl ether	ND		0.33	0.037	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Chrysene	ND		0.067	0.0079	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Dibenz(a,h)anthracene	ND		0.067	0.0074	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Di-n-butyl phthalate	ND		0.33	0.042	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
3,3'-Dichlorobenzidine	ND		0.33	0.035	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Diethyl phthalate	ND		0.33	0.036	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Dimethyl phthalate	ND		0.33	0.036	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4-Dinitrotoluene	ND		0.33	0.027	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,6-Dinitrotoluene	ND		0.33	0.034	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Di-n-octyl phthalate	ND		0.33	0.035	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Fluoranthene	ND		0.067	0.0071	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Fluorene	ND		0.067	0.0088	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Hexachlorobenzene	ND		0.067	0.0071	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
3,3'-Dimethylbenzidine	ND		1.7	0.018	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Hexachlorobutadiene	ND		0.067	0.0075	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Hexachlorocyclopentadiene	ND		0.33	0.036	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Hexachloroethane	ND		0.33	0.024	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Indeno[1,2,3-cd]pyrene	ND		0.067	0.0069	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Isophorone	ND		0.33	0.025	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Methylnaphthalene	ND		0.067	0.0060	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Naphthalene	ND		0.067	0.0057	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Nitroaniline	ND		1.7	0.15	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
3-Nitroaniline	ND		1.7	0.14	mg/Kg		11/18/11 04:12	11/23/11 13:06	1

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-21153/1-A

Matrix: Solid

Analysis Batch: 21730

Client Sample ID: Method Blank

TestAmerica Job ID: 180-5622-1

Prep Type: Total/NA
Prep Batch: 21153

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitroaniline	ND		1.7	0.14	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Nitrobenzene	ND		0.67	0.028	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
N-Nitrosodi-n-propylamine	ND		0.067	0.0078	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
N-Nitrosodiphenylamine	ND		0.33	0.031	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Phenanthrene	ND		0.067	0.011	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Pyrene	ND		0.067	0.0067	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4-Chloro-3-methylphenol	ND		0.33	0.031	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Chlorophenol	ND		0.33	0.027	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Aniline	ND		0.33	0.026	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Methylphenol	ND		0.33	0.023	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Methylphenol, 3 & 4	ND		0.33	0.033	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4-Dichlorophenol	ND		0.067	0.0067	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4-Dimethylphenol	ND		0.33	0.052	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4-Dinitrophenol	ND		1.7	0.40	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4,6-Dinitro-2-methylphenol	ND		1.7	0.13	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2-Nitrophenol	ND		0.33	0.037	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzyl alcohol	ND		0.33	0.040	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
4-Nitrophenol	ND		1.7	0.12	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Pentachlorophenol	ND		0.33	0.030	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Phenol	ND		0.067	0.0079	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4,5-Trichlorophenol	ND		0.33	0.036	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
2,4,6-Trichlorophenol	ND		0.33	0.050	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
1,1'-Biphenyl	ND		0.33	0.030	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Caprolactam	ND		1.7	0.25	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzaldehyde	ND		0.33	0.050	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Atrazine	ND		0.33	0.032	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzoic acid	ND		1.7	0.14	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
Benzidine	ND		6.7	1.4	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
1,4-Dioxane	ND		0.67	0.038	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
1,2-Diphenylhydrazine(as Azobenzene)	ND		0.33	0.043	mg/Kg		11/18/11 04:12	11/23/11 13:06	1
o-Toluidine	ND		0.33	0.025	mg/Kg		11/18/11 04:12	11/23/11 13:06	1

ИВ	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80		25 - 104	11/18/11 04:12	11/23/11 13:06	1
2-Fluorobiphenyl	79		35 - 105	11/18/11 04:12	11/23/11 13:06	1
Terphenyl-d14	69		25 - 127	11/18/11 04:12	11/23/11 13:06	1
Phenol-d5	92		25 - 105	11/18/11 04:12	11/23/11 13:06	1
2-Fluorophenol	83		39 - 103	11/18/11 04:12	11/23/11 13:06	1
2,4,6-Tribromophenol	73		35 - 124	11/18/11 04:12	11/23/11 13:06	1

Lab Sample ID: LCS 180-21153/2-A

Matrix: Solid

Analysis Batch: 21730

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4,5-Tetrachlorobenzene	6.67	5.49		mg/Kg		82	30 - 125
Acenaphthene	6.67	5.95		mg/Kg		89	47 - 104
Acetophenone	6.67	5.97		mg/Kg		90	30 - 150
Acenaphthylene	6.67	6.16		mg/Kg		92	49 - 114

Spike

LCS LCS

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-21153/2-A

Matrix: Solid

2,4-Dimethylphenol

2,4-Dinitrophenol

Analysis Batch: 21730

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21153

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Anthracene	6.67	5.84	mg/Kg		45 - 112	
Benzo[a]anthracene	6.67	6.40	mg/Kg	96	47 - 110	
Benzo[a]pyrene	6.67	6.53	mg/Kg	98	47 - 112	
Benzo[b]fluoranthene	6.67	6.70	mg/Kg	101	41 - 107	
Benzo[g,h,i]perylene	6.67	6.08	mg/Kg	91	38 - 126	
Benzo[k]fluoranthene	6.67	5.71	mg/Kg	86	44 - 115	
Bis(2-chloroethyl)ether	6.67	5.67	mg/Kg	85	38 - 99	
Bis(2-chloroethoxy)methane	6.67	6.00	mg/Kg	90	44 - 101	
2,2'-oxybis[1-chloropropane]	6.67	5.61	mg/Kg	84	36 - 101	
Bis(2-ethylhexyl) phthalate	6.67	6.54	mg/Kg	98	40 - 122	
4-Bromophenyl phenyl ether	6.67	6.02	mg/Kg	90	47 - 110	
Butyl benzyl phthalate	6.67	7.07	mg/Kg	106	41 - 118	
Carbazole	6.67	6.06	mg/Kg	91	45 - 114	
4-Chloroaniline	6.67	5.95	mg/Kg	89	25 - 108	
2-Chloronaphthalene	6.67	5.61	mg/Kg	84	46 - 101	
4-Chlorophenyl phenyl ether	6.67	5.93	mg/Kg	89	47 - 109	
Chrysene	6.67	6.20	mg/Kg	93	46 - 111	
Dibenz(a,h)anthracene	6.67	6.20	mg/Kg	93	39 - 127	
Di-n-butyl phthalate	6.67	6.33	mg/Kg	95	43 - 121	
3,3'-Dichlorobenzidine	6.67	6.44	mg/Kg	97	19 - 122	
Diethyl phthalate	6.67	6.37	mg/Kg	96	47 - 115	
Dimethyl phthalate	6.67	6.16	mg/Kg	92	49 - 111	
2,4-Dinitrotoluene	6.67	6.25	mg/Kg	94	45 - 124	
2,6-Dinitrotoluene	6.67	6.87	mg/Kg	103	50 - 122	
Di-n-octyl phthalate	6.67	7.11	mg/Kg	107	33 - 129	
Fluoranthene	6.67	6.38	mg/Kg	96	40 - 120	
Fluorene	6.67	5.92	mg/Kg	89	46 - 109	
Hexachlorobenzene	6.67	6.12	mg/Kg	92	47 - 108	
Hexachlorobutadiene	6.67	6.06		91	43 - 107	
	6.67	6.13	mg/Kg	92	23 - 129	
Hexachlorocyclopentadiene	6.67	5.85	mg/Kg			
Hexachloroethane			mg/Kg	88	37 - 97	
Indeno[1,2,3-cd]pyrene	6.67	5.95	mg/Kg	89	41 - 125	
Isophorone	6.67	6.02	mg/Kg	90	47 - 110	
2-Methylnaphthalene	6.67	6.13	mg/Kg	92	45 - 100	
Naphthalene	6.67	5.94	mg/Kg	89	43 - 100	
2-Nitroaniline	6.67	6.32	mg/Kg	95	45 - 117	
3-Nitroaniline	6.67	6.63	mg/Kg	100	34 - 122	
4-Nitroaniline	6.67	6.35	mg/Kg	95	38 - 123	
Nitrobenzene	6.67	5.79	mg/Kg	87	43 - 104	
N-Nitrosodi-n-propylamine	6.67	6.07	mg/Kg	91	42 - 107	
N-Nitrosodiphenylamine	6.67	6.13	mg/Kg	92	44 - 111	
Phenanthrene	6.67	6.12		92	43 - 108	
Pyrene	6.67	6.63	mg/Kg	99	41 - 115	
4-Chloro-3-methylphenol	6.67	6.42	mg/Kg	96	47 _ 109	
2-Chlorophenol	6.67	5.97	mg/Kg	89	40 - 101	
Aniline	6.67	5.91	mg/Kg	89	21 - 94	
2-Methylphenol	6.67	6.04	mg/Kg	91	40 - 104	
2,4-Dichlorophenol	6.67	6.31	mg/Kg	95	47 - 105	
0.4.00	2.2=	001	" -		44 40=	

44 - 105

10 - 146

91

106

6.04

7.04

mg/Kg

mg/Kg

6.67

6.67

LCS LCS

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-21153/2-A

Matrix: Solid

Analysis Batch: 21730

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21153

	Фр						70.100.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,6-Dinitro-2-methylphenol	6.67	6.62		mg/Kg		99	24 - 134	
2-Nitrophenol	6.67	6.34		mg/Kg		95	46 - 106	
Benzyl alcohol	6.67	6.15		mg/Kg		92	39 - 108	
4-Nitrophenol	6.67	6.57		mg/Kg		99	36 _ 127	
Pentachlorophenol	6.67	6.36		mg/Kg		95	17 - 122	
Phenol	6.67	5.89		mg/Kg		88	41 - 102	
2,4,5-Trichlorophenol	6.67	6.01		mg/Kg		90	48 - 108	
2,4,6-Trichlorophenol	6.67	6.55		mg/Kg		98	50 - 106	
1,1'-Biphenyl	6.67	5.53		mg/Kg		83	30 - 150	
Caprolactam	6.67	6.88		mg/Kg		103	30 - 150	
Benzaldehyde	6.67	3.33		mg/Kg		50	30 - 150	
Atrazine	6.67	10.4	*	mg/Kg		155	30 - 150	
Benzoic acid	6.67	6.67		mg/Kg		100	11 _ 133	
Benzidine	6.67	5.71	J	mg/Kg		86	30 _ 120	
1,4-Dioxane	6.67	5.51		mg/Kg		83	41 - 102	
1,2-Diphenylhydrazine(as	6.67	5.44		mg/Kg		82	43 - 113	

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	85		25 - 104
2-Fluorobiphenyl	87		35 - 105
Terphenyl-d14	100		25 - 127
Phenol-d5	94		25 - 105
2-Fluorophenol	94		39 - 103
2,4,6-Tribromophenol	97		35 - 124

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels

Lab Sample ID: LCS 180-20447/2-A

Matrix: Water

Azobenzene)

Analysis Batch: 20744

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20447

Analysis Datch. 20744							i iep Dateii. 20	771
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	20.0	13.5		ug/L		67	35 - 99	
Acenaphthylene	20.0	13.7		ug/L		68	37 - 107	
Acetophenone	20.0	12.8		ug/L		64	30 _ 150	
Anthracene	20.0	13.8		ug/L		69	35 _ 105	
Atrazine	20.0	21.6		ug/L		108	30 - 150	
Benzaldehyde	20.0	12.8		ug/L		64	30 - 150	
Benzo[a]anthracene	20.0	14.2		ug/L		71	38 - 101	
Benzo[b]fluoranthene	20.0	12.6		ug/L		63	29 - 98	
Benzo[k]fluoranthene	20.0	13.4		ug/L		67	28 - 107	
Benzo[g,h,i]perylene	20.0	13.0		ug/L		65	20 - 115	
Benzo[a]pyrene	20.0	13.8		ug/L		69	26 - 108	
Bis(2-chloroethoxy)methane	20.0	13.3		ug/L		67	33 - 98	
Bis(2-chloroethyl)ether	20.0	12.1		ug/L		61	33 - 95	
Bis(2-ethylhexyl) phthalate	20.0	14.5		ug/L		72	20 _ 116	
Butyl benzyl phthalate	20.0	14.8		ug/L		74	36 - 108	
1,1'-Biphenyl	20.0	13.0		ug/L		65	30 - 150	

TestAmerica Pittsburgh 12/14/2011

Page 137 of 204

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

Lab Sample ID: LCS 180-20447/2-A

Matrix: Water

Α

Client Sample ID: Lab Co	ontrol Sample
Prep T	ype: Total/NA
_	

Analysis Batch: 20744							Prep E	Batch: 20447
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Caprolactam	20.0	14.8		ug/L		74	30 - 150	
Carbanala	20.0	10.5		/1		60	20 112	

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Caprolactam	20.0	14.8		ug/L		74	30 - 150	
Carbazole	20.0	12.5		ug/L		62	29 - 112	
Chrysene	20.0	13.2		ug/L		66	37 ₋ 99	
2-Chloronaphthalene	20.0	12.8		ug/L		64	34 - 96	
2-Chlorophenol	20.0	12.8		ug/L		64	31 _ 99	
2,4-Dichlorophenol	20.0	13.7		ug/L		69	34 - 104	
2,4-Dimethylphenol	20.0	13.4		ug/L		67	33 _ 97	
2,4-Dinitrophenol	20.0	10.9		ug/L		54	10 _ 130	
2,4-Dinitrotoluene	20.0	13.5		ug/L		68	37 - 115	
2,6-Dinitrotoluene	20.0	13.8		ug/L		69	39 _ 113	
2-Methylnaphthalene	20.0	12.8		ug/L		64	34 - 98	
2-Methylphenol	20.0	13.0		ug/L		65	33 - 98	
2-Nitroaniline	20.0	14.6		ug/L		73	29 - 112	
2-Nitrophenol	20.0	13.2		ug/L		66	34 - 107	
2,2'-oxybis[1-chloropropane]	20.0	12.4		ug/L		62	30 _ 99	
2,4,5-Trichlorophenol	20.0	13.9		ug/L		69	34 - 104	
2,4,6-Trichlorophenol	20.0	13.8		ug/L		69	36 - 103	
4-Nitroaniline	20.0	12.9		ug/L		64	20 _ 124	
4-Nitrophenol	20.0	11.8		ug/L		59	29 - 115	
4-Chlorophenyl phenyl ether	20.0	13.3		ug/L		67	34 - 103	
Methylphenol, 3 & 4	40.0	28.0		ug/L		70	32 - 100	
4,6-Dinitro-2-methylphenol	20.0	14.0		ug/L		70	24 - 124	
4-Chloroaniline	20.0	13.4		ug/L		67	10 - 99	
4-Chloro-3-methylphenol	20.0	14.2		ug/L		71	35 _ 104	
4-Bromophenyl phenyl ether	20.0	14.3		ug/L		71	37 - 104	
Dibenz(a,h)anthracene	20.0	13.5		ug/L		67	19 - 118	
Dibenzofuran	20.0	12.8		ug/L		64	34 - 101	
Di-n-butyl phthalate	20.0	13.9		ug/L		69	37 _ 111	
Diethyl phthalate	20.0	13.1		ug/L		65	36 - 109	
Dimethyl phthalate	20.0	13.3		ug/L		66	37 - 106	
Di-n-octyl phthalate	20.0	16.2		ug/L		81	11 - 127	
3,3'-Dichlorobenzidine	20.0	13.7		ug/L		69	10 _ 89	
3-Nitroaniline	20.0	13.5		ug/L		67	11 - 104	
Fluoranthene	20.0	13.1		ug/L		65	32 - 112	
Fluorene	20.0	13.3		ug/L		67	34 - 104	
Hexachlorobenzene	20.0	13.5		ug/L		67	35 - 102	
Hexachlorobutadiene	20.0	12.0		ug/L		60	35 _ 100	
Hexachlorocyclopentadiene	20.0	13.1		ug/L		65	36 ₋ 115	
Hexachloroethane	20.0	10.9		ug/L		55	32 _ 94	
Indeno[1,2,3-cd]pyrene	20.0	12.7		ug/L		63	22 _ 115	
Isophorone	20.0	13.6		ug/L		68	38 - 102	
Naphthalene	20.0	12.2		ug/L		61	35 _ 97	
Nitrobenzene	20.0	12.4		ug/L		62	37 - 100	
N-Nitrosodiphenylamine	20.0	14.2		ug/L		71	32 - 102	
N-Nitrosodi-n-propylamine	20.0	12.9		ug/L		64	34 - 101	
Pyrene	20.0	15.7		ug/L		79	35 - 106	
Phenol	20.0	12.6		ug/L		63	32 - 95	
Phenanthrene	20.0	13.2		ug/L		66	32 - 104	
Pentachlorophenol	20.0	10.7		ug/L		54	15 - 111	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

Lab Sample ID: LCS 180-20447/2-A

Matrix: Water

Analysis Batch: 20744

Analysis Batch: 20744

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20447

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	77		16 - 122
2-Fluorobiphenyl	64		19 - 107
2-Fluorophenol	71		10 - 111
Nitrobenzene-d5	62		23 - 112
Phenol-d5	70		15 - 112
Terphenyl-d14	78		10 - 132

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 20447

Lab Sample ID: LCSD 180-20447/3-A **Matrix: Water**

Spike

LCSD LCSD

	Opine LOOD L		LOOD				/ortco.		KFD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acenaphthene	20.0	12.6		ug/L		63	35 - 99	6	41	
Acenaphthylene	20.0	12.8		ug/L		64	37 - 107	7	40	
Acetophenone	20.0	12.0		ug/L		60	30 - 150	7	35	
Anthracene	20.0	13.1		ug/L		65	35 - 105	5	37	
Atrazine	20.0	21.2		ug/L		106	30 - 150	2	35	
Benzaldehyde	20.0	4.56	*	ug/L		23	30 - 150	95	35	
Benzo[a]anthracene	20.0	13.8		ug/L		69	38 - 101	3	36	
Benzo[b]fluoranthene	20.0	13.0		ug/L		65	29 - 98	4	46	
Benzo[k]fluoranthene	20.0	11.9		ug/L		60	28 - 107	12	31	
Benzo[g,h,i]perylene	20.0	12.2		ug/L		61	20 - 115	6	44	
Benzo[a]pyrene	20.0	12.8		ug/L		64	26 - 108	7	40	
Bis(2-chloroethoxy)methane	20.0	12.5		ug/L		62	33 - 98	7	46	
Bis(2-chloroethyl)ether	20.0	11.5		ug/L		57	33 - 95	6	38	
Bis(2-ethylhexyl) phthalate	20.0	13.6		ug/L		68	20 - 116	6	40	
Butyl benzyl phthalate	20.0	13.7		ug/L		68	36 - 108	8	40	
1,1'-Biphenyl	20.0	12.0		ug/L		60	30 - 150	8	35	
Caprolactam	20.0	12.3		ug/L		62	30 - 150	18	35	
Carbazole	20.0	12.0		ug/L		60	29 - 112	4	35	
Chrysene	20.0	12.1		ug/L		61	37 - 99	8	42	
2-Chloronaphthalene	20.0	11.8		ug/L		59	34 - 96	8	39	
2-Chlorophenol	20.0	11.8		ug/L		59	31 - 99	8	39	
2,4-Dichlorophenol	20.0	12.5		ug/L		63	34 - 104	9	41	
2,4-Dimethylphenol	20.0	11.9		ug/L		60	33 - 97	11	40	
2,4-Dinitrophenol	20.0	10.8		ug/L		54	10 - 130	1	53	
2,4-Dinitrotoluene	20.0	12.2		ug/L		61	37 - 115	10	39	
2,6-Dinitrotoluene	20.0	12.3		ug/L		61	39 - 113	12	40	
2-Methylnaphthalene	20.0	11.8		ug/L		59	34 - 98	8	42	
2-Methylphenol	20.0	12.3		ug/L		62	33 - 98	5	38	
2-Nitroaniline	20.0	13.6		ug/L		68	29 - 112	7	65	
2-Nitrophenol	20.0	12.4		ug/L		62	34 - 107	7	41	
2,2'-oxybis[1-chloropropane]	20.0	11.5		ug/L		58	30 - 99	8	42	
2,4,5-Trichlorophenol	20.0	12.4		ug/L		62	34 - 104	11	39	
2,4,6-Trichlorophenol	20.0	12.8		ug/L		64	36 - 103	7	39	
4-Nitroaniline	20.0	12.3		ug/L		61	20 - 124	5	45	
4-Nitrophenol	20.0	10.5		ug/L		53	29 - 115	12	42	
4-Chlorophenyl phenyl ether	20.0	12.0		ug/L		60	34 - 103	10	38	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

Lab Sample ID: LCSD 180-20447/3-A

Matrix: Water

Analysis Batch: 20744

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 20447

Alialysis Datcii. 20744							Lieb	Dateii.	20441
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,6-Dinitro-2-methylphenol	20.0	13.0		ug/L		65	24 - 124	7	41
4-Chloroaniline	20.0	12.2		ug/L		61	10 - 99	10	39
4-Chloro-3-methylphenol	20.0	13.6		ug/L		68	35 - 104	4	42
4-Bromophenyl phenyl ether	20.0	13.1		ug/L		66	37 - 104	9	40
Dibenz(a,h)anthracene	20.0	12.7		ug/L		63	19 - 118	6	44
Dibenzofuran	20.0	11.6		ug/L		58	34 - 101	10	39
Di-n-butyl phthalate	20.0	13.6		ug/L		68	37 - 111	2	38
Diethyl phthalate	20.0	11.8		ug/L		59	36 - 109	10	39
Dimethyl phthalate	20.0	11.7		ug/L		59	37 - 106	13	42
Di-n-octyl phthalate	20.0	15.4		ug/L		77	11 - 127	5	44
3,3'-Dichlorobenzidine	20.0	12.3		ug/L		62	10 - 89	11	56
3-Nitroaniline	20.0	11.6		ug/L		58	11 - 104	15	48
Fluoranthene	20.0	12.9		ug/L		64	32 - 112	2	39
Fluorene	20.0	12.0		ug/L		60	34 - 104	11	40
Hexachlorobenzene	20.0	13.1		ug/L		65	35 - 102	3	35
Hexachlorobutadiene	20.0	11.1		ug/L		56	35 - 100	8	41
Hexachlorocyclopentadiene	20.0	12.3		ug/L		62	36 - 115	6	47
Hexachloroethane	20.0	10.3		ug/L		51	32 - 94	6	39
Indeno[1,2,3-cd]pyrene	20.0	12.1		ug/L		61	22 - 115	5	54
Isophorone	20.0	12.7		ug/L		64	38 - 102	7	43
Naphthalene	20.0	11.6		ug/L		58	35 - 97	5	43
Nitrobenzene	20.0	12.0		ug/L		60	37 - 100	3	42
N-Nitrosodiphenylamine	20.0	13.4		ug/L		67	32 - 102	6	36
N-Nitrosodi-n-propylamine	20.0	12.2		ug/L		61	34 - 101	6	43
Pyrene	20.0	14.3		ug/L		71	35 - 106	9	42
Phenol	20.0	11.9		ug/L		59	32 - 95	6	39
Phenanthrene	20.0	13.4		ug/L		67	32 - 104	2	36
Pentachlorophenol	20.0	10.2		ug/L		51	15 _ 111	5	42

MB MB

ND

ND

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	72		16 - 122
2-Fluorobiphenyl	61		19 - 107
2-Fluorophenol	66		10 - 111
Nitrobenzene-d5	59		23 - 112
Phenol-d5	66		15 - 112
Terphenyl-d14	73		10 - 132

Lab Sample ID: MB 180-20631/1-A

Matrix: Water

Benzaldehyde

Benzo[a]anthracene

Analysis Batch: 20906

Client	Samp	le ID:	: Metho	od Bi	ank

11/15/11 13:09

11/15/11 13:09

11/14/11 08:36

11/14/11 08:36

Prep Type: Total/NA

Prep Batch: 20631

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.20	0.014	ug/L		11/14/11 08:36	11/15/11 13:09	1
Acenaphthylene	ND		0.20	0.015	ug/L		11/14/11 08:36	11/15/11 13:09	1
Acetophenone	ND		1.0	0.080	ug/L		11/14/11 08:36	11/15/11 13:09	1
Anthracene	ND		0.20	0.15	ug/L		11/14/11 08:36	11/15/11 13:09	1
Atrazine	ND		1.0	0.089	ug/L		11/14/11 08:36	11/15/11 13:09	1
	Acenaphthene Acenaphthylene Acetophenone Anthracene	Acenaphthene ND Acenaphthylene ND Acetophenone ND Anthracene ND	Acenaphthene ND Acenaphthylene ND Acetophenone ND Anthracene ND	Acenaphthene ND 0.20 Acenaphthylene ND 0.20 Acetophenone ND 1.0 Anthracene ND 0.20	Acenaphthene ND 0.20 0.014 Acenaphthylene ND 0.20 0.015 Acetophenone ND 1.0 0.080 Anthracene ND 0.20 0.15	Acenaphthene ND 0.20 0.014 ug/L Acenaphthylene ND 0.20 0.015 ug/L Acetophenone ND 1.0 0.080 ug/L Anthracene ND 0.20 0.15 ug/L	Acenaphthene ND 0.20 0.014 ug/L Acenaphthylene ND 0.20 0.015 ug/L Acetophenone ND 1.0 0.080 ug/L Anthracene ND 0.20 0.15 ug/L	Acenaphthene ND 0.20 0.014 ug/L 11/14/11 08:36 Acenaphthylene ND 0.20 0.015 ug/L 11/14/11 08:36 Acetophenone ND 1.0 0.080 ug/L 11/14/11 08:36 Anthracene ND 0.20 0.15 ug/L 11/14/11 08:36	Acenaphthene ND 0.20 0.014 ug/L 11/14/11 08:36 11/15/11 13:09 Acenaphthylene ND 0.20 0.015 ug/L 11/14/11 08:36 11/15/11 13:09 Acetophenone ND 1.0 0.080 ug/L 11/14/11 08:36 11/15/11 13:09 Anthracene ND 0.20 0.15 ug/L 11/14/11 08:36 11/15/11 13:09

1.0

0.20

0.15 ug/L

0.015 ug/L

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

MB MB

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: MB 180-20631/1-A

Matrix: Water

2-Chloronaphthalene

2-Chlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

2 4-Dinitrotoluene

4-Nitroaniline

4-Nitrophenol

Isophorone

Analyte

Analysis Batch: 20906

Client Sample ID: Method Blank

Prep Type: Total/NA
Prep Batch: 20631

11/15/11 13:09

11/15/11 13:09

11/15/11 13:09

11/15/11 13:09

Prepared Analyzed 0.20 11/14/11 08:36 11/15/11 13:09 Benzo[b]fluoranthene ND 0.016 ug/L Benzo[k]fluoranthene ND 0.20 0.055 ug/L 11/14/11 08:36 11/15/11 13:09 ND Benzo[g,h,i]perylene 0.20 0.015 ug/L 11/14/11 08:36 11/15/11 13:09 Benzo[a]pyrene ND 0.20 0.013 ug/L 11/14/11 08:36 11/15/11 13:09 ND Bis(2-chloroethoxy)methane 1.0 0.058 ug/L 11/14/11 08:36 11/15/11 13:09 Bis(2-chloroethyl)ether ND 0.20 11/14/11 08:36 11/15/11 13:09 0.025 ug/L Bis(2-ethylhexyl) phthalate ND 2.0 ug/L 11/14/11 08:36 11/15/11 13:09 1.3

RL

Dil Fac

Butyl benzyl phthalate ND 1.0 0.14 ug/L 11/14/11 08:36 11/15/11 13:09 1,1'-Biphenyl ND 1.0 0.042 ug/L 11/14/11 08:36 11/15/11 13:09 Caprolactam ND 5.0 1.2 ug/L 11/14/11 08:36 11/15/11 13:09 Carbazole ND 0.20 0.016 ug/L 11/14/11 08:36 11/15/11 13:09 Chrysene

ND 0.20 0.014 ug/L 11/14/11 08:36 11/15/11 13:09 ND 0.20 0.015 11/14/11 08:36 11/15/11 13:09 ug/L ND 1.0 0.17 ug/L 11/14/11 08:36 11/15/11 13:09 ND 0.20 0.033 ug/L 11/14/11 08:36 11/15/11 13:09 ND 1.0 0.085 ug/L 11/14/11 08:36 11/15/11 13:09

> 0.61 ug/L

0.054 ug/L

> 0.17 ug/L

0.65 ug/L

MDL Unit

D

11/14/11 08:36

11/14/11 08:36

11/14/11 08:36

11/14/11 08:36

11/14/11 08:36

ND 2.6-Dinitrotoluene 1.0 0.080 ug/L 11/14/11 08:36 11/15/11 13:09 2-Methylnaphthalene ND 0.20 0.012 ug/L 11/14/11 08:36 11/15/11 13:09 2-Methylphenol ND 0.086 11/14/11 08:36 11/15/11 13:09 1.0 ug/L 2-Nitroaniline ND 5.0 0.35 ug/L 11/14/11 08:36 11/15/11 13:09 2-Nitrophenol ND 1.0 0.17 ug/L 11/14/11 08:36 11/15/11 13:09 ND 0.20 11/14/11 08:36 2,2'-oxybis[1-chloropropane] 0.020 ug/L 11/15/11 13:09 2,4,5-Trichlorophenol ND 1.0 0.15 ug/L 11/14/11 08:36 11/15/11 13:09 2,4,6-Trichlorophenol ND 1.0 0.17 11/14/11 08:36 11/15/11 13:09 ua/L

5.0

1.0

5.0

5.0

ND 4-Chlorophenyl phenyl ether 1.0 0.050 ua/L 11/14/11 08:36 11/15/11 13:09 Methylphenol, 3 & 4 ND 1.0 0.090 ug/L 11/14/11 08:36 11/15/11 13:09 4,6-Dinitro-2-methylphenol NΠ 5.0 0.22 ug/L 11/14/11 08:36 11/15/11 13:09 4-Chloroaniline ND 1.0 0.089 ug/L 11/14/11 08:36 11/15/11 13:09 4-Chloro-3-methylphenol ND 1.0 0.075 ug/L 11/14/11 08:36 11/15/11 13:09 4-Bromophenyl phenyl ether ND 1.0 0.064 ug/L 11/14/11 08:36 11/15/11 13:09

Dibenz(a,h)anthracene ND 0.20 0.016 ug/L 11/14/11 08:36 11/15/11 13:09 Dibenzofuran ND 1.0 0.062 ug/L 11/14/11 08:36 11/15/11 13:09 Di-n-butyl phthalate ND 1.0 0.12 ug/L 11/14/11 08:36 11/15/11 13:09 ND Diethyl phthalate 1.0 0.15 ug/L 11/14/11 08:36 11/15/11 13:09 Dimethyl phthalate ND 1.0 0.077 ug/L 11/14/11 08:36 11/15/11 13:09 Di-n-octyl phthalate ND 1.0 0.21 ug/L 11/14/11 08:36 11/15/11 13:09

3,3'-Dichlorobenzidine ND 1.0 0.11 ug/L 11/14/11 08:36 11/15/11 13:09 ND 0.32 ug/L 3-Nitroaniline 5.0 11/14/11 08:36 11/15/11 13:09 Fluoranthene ND 0.20 0.016 ug/L 11/14/11 08:36 11/15/11 13:09 Fluorene NΠ 0.20 0.022 ug/L 11/14/11 08:36 11/15/11 13:09 ND 0.20 0.018 11/14/11 08:36 11/15/11 13:09 Hexachlorobenzene ug/L

Hexachlorobutadiene ND 0.20 0.017 ug/L 11/14/11 08:36 11/15/11 13:09 Hexachlorocyclopentadiene ND 1.0 0.052 ug/L 11/14/11 08:36 11/15/11 13:09 Hexachloroethane ND 1.0 0.063 ug/L 11/14/11 08:36 11/15/11 13:09 Indeno[1,2,3-cd]pyrene ND 0.20 0.020 ug/L 11/14/11 08:36 11/15/11 13:09

11/15/11 13:09

1.0

0.064

ug/L

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

Lab Sample ID: MB 180-20631/1-A

Lab Sample ID: LCS 180-20631/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 20906

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 20631

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.20	0.014	ug/L		11/14/11 08:36	11/15/11 13:09	1
Nitrobenzene	ND		2.0	0.084	ug/L		11/14/11 08:36	11/15/11 13:09	1
N-Nitrosodiphenylamine	ND		1.0	0.085	ug/L		11/14/11 08:36	11/15/11 13:09	1
N-Nitrosodi-n-propylamine	ND		0.20	0.031	ug/L		11/14/11 08:36	11/15/11 13:09	1
Pyrene	ND		0.20	0.016	ug/L		11/14/11 08:36	11/15/11 13:09	1
Phenol	ND		0.20	0.058	ug/L		11/14/11 08:36	11/15/11 13:09	1
Phenanthrene	ND		0.20	0.043	ug/L		11/14/11 08:36	11/15/11 13:09	1
Pentachlorophenol	ND		1.0	0.066	ug/L		11/14/11 08:36	11/15/11 13:09	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	86	16 - 122	11/14/11 08:36	11/15/11 13:09	1
2-Fluorobiphenyl	73	19 - 107	11/14/11 08:36	11/15/11 13:09	1
2-Fluorophenol	78	10 - 111	11/14/11 08:36	11/15/11 13:09	1
Nitrobenzene-d5	69	23 - 112	11/14/11 08:36	11/15/11 13:09	1
Phenol-d5	80	15 - 112	11/14/11 08:36	11/15/11 13:09	1
Terphenyl-d14	84	10 - 132	11/14/11 08:36	11/15/11 13:09	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 20906							Prep Batch: 20631
Analysis Batch. 20900	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthene	20.0	14.6		ug/L		73	35 - 99
Acenaphthylene	20.0	16.0		ug/L		80	37 - 107
Acetophenone	20.0	14.5		ug/L		73	30 - 150
Anthracene	20.0	14.3		ug/L		71	35 ₋ 105
Atrazine	20.0	25.5		ug/L		128	30 - 150
Benzaldehyde	20.0	6.06		ug/L		30	30 - 150
Benzo[a]anthracene	20.0	14.5		ug/L		72	38 - 101
Benzo[b]fluoranthene	20.0	13.9		ug/L		69	29 - 98
Benzo[k]fluoranthene	20.0	14.1		ug/L		70	28 - 107
Benzo[g,h,i]perylene	20.0	14.2		ug/L		71	20 - 115
Benzo[a]pyrene	20.0	14.5		ug/L		73	26 - 108
Bis(2-chloroethoxy)methane	20.0	14.5		ug/L		73	33 - 98
Bis(2-chloroethyl)ether	20.0	14.3		ug/L		71	33 - 95
Bis(2-ethylhexyl) phthalate	20.0	14.6		ug/L		73	20 - 116
Butyl benzyl phthalate	20.0	14.7		ug/L		74	36 - 108
1,1'-Biphenyl	20.0	15.0		ug/L		75	30 - 150
Caprolactam	20.0	14.2		ug/L		71	30 - 150
Carbazole	20.0	13.7		ug/L		68	29 - 112
Chrysene	20.0	14.8		ug/L		74	37 - 99
2-Chloronaphthalene	20.0	15.1		ug/L		76	34 - 96
2-Chlorophenol	20.0	14.1		ug/L		70	31 - 99
2,4-Dichlorophenol	20.0	14.9		ug/L		75	34 - 104
2,4-Dimethylphenol	20.0	14.7		ug/L		73	33 - 97
2,4-Dinitrophenol	20.0	12.3		ug/L		61	10 - 130
2,4-Dinitrotoluene	20.0	13.9		ug/L		69	37 ₋ 115
2,6-Dinitrotoluene	20.0	14.4		ug/L		72	39 - 113
2-Methylnaphthalene	20.0	14.3		ug/L		72	34 - 98

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

Method: 8270C LL - Semivolatile Organic Compounds by GCMS - Low Levels (Continued)

Lab Sample ID: LCS 180-20631/2-A

Matrix: Water

Analysis Batch: 20906

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20631

Analysta	Alialysis Batch. 20906	Spike	LCS	LCS		%Rec.
2-Methylphenol 20.0	Analyte	•			t D %Rec	
2-Nitrophenol 20.0 14.8 ug/L 74 29.112 2-Nitrophenol 20.0 15.1 ug/L 76 34.107 2-2-oxybig-L-chloropropanel 20.0 15.2 ug/L 76 34.104 2-4,6-Trichlorophenol 20.0 15.2 ug/L 81 36.103 2-4,6-Trichlorophenol 20.0 13.6 ug/L 63 29.115 4-Nitrophenol 20.0 14.5 ug/L 63 29.115 4-Nitrophenol 20.0 14.5 ug/L 73 32.100 Methylphenol, 3.8.4 40.0 29.8 ug/L 74 24.124 4-G-Dintro-Z-methylphenol 20.0 14.9 ug/L 74 35.104 4-G-Dintro-Z-methylphenol 20.0 14.9 ug/L 74 35.104 4-B-Dintro-Z-methylphenol 20.0 15.3 ug/L 74 35.104 4-B-Dintro-Z-methylphenol 20.0 15.3 ug/L 74 35.104 4-B-Dintro-Z-methy						
2-Nitrophenol 2-0.0 15.1 ug/L 76 34.107 2.2*-oxylist*1-chloropropanel 2-0.0 13.9 ug/L 70 30.99 2.4.6.4.5-Trichlorophenol 2-0.0 15.2 ug/L 76 34.104 2.4.6.5-Trichlorophenol 2-0.0 16.2 ug/L 81 36.103 2.4.6.5-Trichlorophenol 2-0.0 13.6 ug/L 68 20.124 2.4.6.5-Trichlorophenol 2-0.0 12.6 ug/L 68 20.124 2.4.6.5-Trichlorophenol 2-0.0 12.6 ug/L 68 20.124 2.4.0.5-Trichlorophenol 2-0.0 14.5 ug/L 73 34.103 2.4.0.5-Trichlorophenol 3-0.0 14.5 ug/L 73 34.103 2.4.0.5-Trichlorophenol 3-0.0 14.5 ug/L 74 24.124 2.4.0.5-Trichlorophenol 2-0.0 14.8 ug/L 74 24.124 2.4.0.5-Trichlorophenol 2-0.0 14.8 ug/L 74 35.104 2.4.0.5-Trichlorophenol 2-0.0 13.6 ug/L 68 36.109 2.4.0.5-Trichlorophenol 2-0.0 13.6 ug/L 68 36.109 2.4.0.5-Trichlorophenol 2-0.0 13.6 ug/L 68 31.104 2.4.0.5-Trichlorophenol 2-0.0 13.6 ug/L 68 32.112 2.4.0.5-Trichlorophenol 2-0.0 13.6 ug/L 68 32.112 2.4.0.5-Trichlorophenol 2-0.0 13.9 ug/L 69 22.115 2.4.0.5-Trichlorophenol 2-0.0 14.4 ug/L 74 35.102 2.4.0.5-Trichlorophenol 2-0.0 14.9 ug/L 74 35.102 2			14.8	- -		29 - 112
2.2-wybisif-chloropropanel 20.0 13.9 ug/L 70 30.99 2.4.5-Trichlorophenol 20.0 15.2 ug/L 81 36.103 4-Nitroaniline 20.0 13.6 ug/L 68 20.124 4-Nitrophenol 20.0 13.6 ug/L 63 29.115 4-Nitrophenol 20.0 14.5 ug/L 73 34.103 Methylphenol, 3 & 4 40.0 29.8 ug/L 74 10.99 4-Chlorop-amethylphenol 20.0 14.9 ug/L 74 10.99 4-Chloro-3-methylphenol 20.0 14.8 ug/L 74 10.99 4-Chloro-3-methylphenol 20.0 14.8 ug/L 74 10.99 4-Chloro-3-methylphenol 20.0 15.3 ug/L 74 10.99 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 74 19.118 Dibercally phraliate 20.0 15.6 ug/L 74 19.118 Dibenzofuran	2-Nitrophenol		15.1			34 - 107
2.4.5-Trichlorophenol 20.0 15.2 ug/L 81 34-104 2.4.5-Trichlorophenol 20.0 16.2 ug/L 86 20-124 A-Nitrophenol 20.0 12.6 ug/L 63 29-115 4-Chirophenyl phenyl ether 20.0 14.5 ug/L 75 32-100 4.6-Dinitro-2-methylphenol 20.0 14.9 ug/L 74 24-124 4-Chiror-3-methylphenol 20.0 14.9 ug/L 74 24-124 4-Chiror-3-methylphenol 20.0 14.9 ug/L 74 25-104 4-Chiror-3-methylphenol 20.0 14.9 ug/L 74 25-104 4-Bromophenyl phenyl ether 20.0 14.9 ug/L 77 37-104 Diberzofura 20.0 15.3 ug/L 69 34-101 Diberzofura 20.0 13.8 ug/L 69 34-101 Diberzofura 20.0 13.6 ug/L 68 36-109 Diberzofura	2,2'-oxybis[1-chloropropane]	20.0	13.9			30 - 99
A-Nitropinen 20.0 13.6 ug/L 68 20.124	2,4,5-Trichlorophenol	20.0	15.2	=		34 - 104
4-Nitrophenol 20.0 12.6 ug/L 63 29.115 4-Chiorophenyl ether 20.0 14.5 ug/L 73 34.103 Methylphenol, 3 & 4 40.0 29.8 ug/L 75 32.100 4,6-Dinitro-Z-methylphenol 20.0 14.8 ug/L 74 20.99 4-Chloros-3-methylphenol 20.0 14.8 ug/L 74 35.104 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 77 37.104 4-Bromophenyl phenyl ether 20.0 13.8 ug/L 74 19.18 Dibenzofuran 20.0 13.8 ug/L 69 34.101 Di-butyl phthalate 20.0 13.6 ug/L 69 37.104 Dimethyl phthalate 20.0 13.6 ug/L 68 36.109 Di-methyl phthalate 20.0 13.6 ug/L 68 11.227 3,3-Dichiorobenzidine 20.0 13.6 ug/L 68 11.227 3,3-Dichiorobenzid	2,4,6-Trichlorophenol	20.0	16.2	ug/L	_ 81	36 - 103
4-Chlorophenyl phenyl ether 20.0	4-Nitroaniline	20.0	13.6	ug/L	_ 68	20 - 124
Methylphenol, 3 8 4 40.0 29.8 ug/L 75 32 - 100 4.6-Dinitro-2-methylphenol 20.0 14.9 ug/L 74 24 - 124 4-Chloro-3-methylphenol 20.0 14.8 ug/L 74 10 - 99 4-Chloro-3-methylphenol 20.0 14.8 ug/L 77 37 - 104 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 74 19 - 118 Dibenzofuran 20.0 13.8 ug/L 69 34 - 101 Di-h-butyl phthalate 20.0 13.6 ug/L 68 36 - 109 Di-h-butyl phthalate 20.0 13.6 ug/L 68 37 - 101 Di-motyl phthalate 20.0 13.6 ug/L 68 37 - 106 Di-n-otyl phthalate 20.0 13.6 ug/L 68 37 - 106 Di-n-otyl phthalate 20.0 13.6 ug/L 68 11 - 27 3.3-Dichlorobenzidine 20.0 13.6 ug/L 68 11 - 127	4-Nitrophenol	20.0	12.6	ug/L	_ 63	29 - 115
4,6-Dinitro-2-methylphenol 20.0 14.9 ug/L 74 24-124 4-Chloro-3-methylphenol 20.0 14.8 ug/L 74 10.99 4-Chloro-3-methylphenol 20.0 14.8 ug/L 74 35.104 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 74 19.118 Dibenz(a,h)anthracene 20.0 14.8 ug/L 69 34-101 Dibenzofuran 20.0 13.8 ug/L 68 34-101 Diben-butyl phthalate 20.0 13.6 ug/L 68 36-109 Dimethyl phthalate 20.0 13.6 ug/L 68 36-109 Dimethyl phthalate 20.0 13.6 ug/L 68 36-109 Dimethyl phthalate 20.0 13.6 ug/L 68 10-8 3-3-Dichloroberzidine 20.0 13.6 ug/L 68 11-27 3-3-Dichloroberzidine 20.0 13.6 ug/L 68 11-104 Fluorene	4-Chlorophenyl phenyl ether	20.0	14.5	ug/L	_ 73	34 - 103
4-Chloroaniline 20.0 14.8 ug/L 74 10.99 4-Chloror-3-methylphenol 20.0 14.9 ug/L 74 35.104 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 77 37.104 Dibenzofuran 20.0 14.8 ug/L 69 34.101 Dibenzofuran 20.0 13.8 ug/L 69 34.101 Di-houtyl phthalate 20.0 14.2 ug/L 68 36.109 Dimethyl phthalate 20.0 13.6 ug/L 68 37.106 Di-n-octyl phthalate 20.0 13.6 ug/L 68 10.99 Di-n-octyl phthalate 20.0 13.6 ug/L 68 10.98 3-Nitroaniline 20.0 13.6 ug/L 68 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11.104 Hevachlorobutadiene 20.0 14.8 ug/L 72 35.102 Hexachlorobutadiene 20.0<	Methylphenol, 3 & 4	40.0	29.8	ug/L	_ 75	32 - 100
4-Chloroaniline 20.0 14.8 ug/L 74 10.99 4-Chloror-3-methylphenol 20.0 14.9 ug/L 74 35.104 4-Bromophenyl phenyl ether 20.0 15.3 ug/L 77 37.104 Dibenzofuran 20.0 14.8 ug/L 69 34.101 Dibenzofuran 20.0 13.8 ug/L 69 34.101 Di-houtyl phthalate 20.0 14.2 ug/L 68 36.109 Dimethyl phthalate 20.0 13.6 ug/L 68 37.106 Di-n-octyl phthalate 20.0 13.6 ug/L 68 10.99 Di-n-octyl phthalate 20.0 13.6 ug/L 68 10.98 3-Nitroaniline 20.0 13.6 ug/L 68 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11.104 Hevachlorobutadiene 20.0 14.8 ug/L 72 35.102 Hexachlorobutadiene 20.0<	4,6-Dinitro-2-methylphenol	20.0	14.9	ug/L	. 74	24 - 124
A-Bromophenyl ptenyl ether 20.0 15.3 ug/L 77 37.104 Dibenz(a,h)anthracene 20.0 14.8 ug/L 69 34.101 Di-n-butyl phthalate 20.0 13.8 ug/L 68 36.109 Di-n-butyl phthalate 20.0 13.6 ug/L 68 36.109 Dimethyl phthalate 20.0 13.6 ug/L 69 37.106 Dimethyl phthalate 20.0 13.9 ug/L 68 36.109 Dimethyl phthalate 20.0 16.5 ug/L 68 10.89 Di-n-butyl phthalate 20.0 13.6 ug/L 68 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.9 ug/L 69 32.112 Fluorene 20.0 14.3 ug/L 71 34.104 Hexachlorobutadiene 20.0 14.8 ug/L 74 35.102 Hexachlorocyclopentadiene 20.0 14.8 ug/L 72 35.100 Hexachlorocyclopentadiene 20.0 14.4 ug/L 72 35.100 Hexachlorocyclopentadiene 20.0 14.9 ug/L 69 22.115 Hophorone 20.0 14.9 ug/L 71 35.97 Nitrobenzene 20.0 14.9 ug/L 71 35.97 Nitrobenzene 20.0 14.9 ug/L 75 32.102 N-Nitrosodiphenylamine 20.0 14.7 ug/L 74 34.101 Pyrene 20.0 14.9 ug/L 75 32.102 Phenol 20.0 14.9 ug/L 74 34.101 Pyrene 20.0 14.9 ug/L 74 34.101 Pyrene 20.0 14.9 ug/L 75 32.102 Phenol 20.0 14.9 ug/L 66 32.95 Phenol 20.0 14.9 ug/L 67 32.104 Pyrene 20.0 14.9 ug/L 67 32.104 Pyr		20.0	14.8	ug/L	. 74	10 - 99
Dibenz(a,h)anthracene 20.0 14.8 ug/L 74 19.118 Dibenzofuran 20.0 13.8 ug/L 69 34.101 Di-n-butyl phthalate 20.0 14.2 ug/L 61 37.111 Diethyl phthalate 20.0 13.9 ug/L 68 36.109 Di-n-octyl phthalate 20.0 16.5 ug/L 82 11.127 3,3'-Dichlorobenzidine 20.0 13.6 ug/L 68 10.89 3-Nitroaniline 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.6 ug/L 68 11.104 Hexachlorobenzene 20.0 14.3 ug/L 68 11.104 Hexachlorobenzene 20.0 14.8 ug/L 71 35.102 Hexachlorocyclopentadiene 20.0 14.9 ug/L 69 32.94 Hexachlorocyclopentadiene 20.0	4-Chloro-3-methylphenol	20.0	14.9	ug/L	_ 74	35 - 104
Dibenzofuran 20.0 13.8 ug/L 69 34-101 Di-n-butyl phthalate 20.0 14.2 ug/L 71 37-111 Diethyl phthalate 20.0 13.6 ug/L 68 36-109 Dimethyl phthalate 20.0 13.6 ug/L 68 36-109 Dimethyl phthalate 20.0 13.9 ug/L 68 37-106 Di-n-octyl phthalate 20.0 13.6 ug/L 68 11-127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11-104 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11-104 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 11-104 Fluoranthene 20.0 13.9 ug/L 69 32-112 Fluorene 20.0 14.3 ug/L 71 34-104 Hexachlorobenzene 20.0 14.3 ug/L 74 35-102 Hexachlorobenzene 20.0 14.4 ug/L 72 35-100 Hexachlorocthane 20.0 14.4 ug/L 72 35-100 Hexachlorocthane 20.0 13.9 ug/L 69 32-94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 32-94 Indeno[1,2,3-cd]pyrene 20.0 14.9 ug/L 74 38-102 Naphthalene 20.0 14.9 ug/L 74 38-102 Naphthalene 20.0 14.9 ug/L 75 32-102 N-Nitrosodi-n-propylamine 20.0 14.9 ug/L 75 32-102 N-Nitrosodi-n-propylamine 20.0 14.9 ug/L 74 34-101 Pyrene 20.0 14.9 ug/L 75 35-106 Phenolthrene 20.0 14.9 ug/L 75 35-106 Phenolthrene 20.0 14.9 ug/L 75 35-106 Phenonthrene 20.0 14.9 ug/L 75 35-106 Phenonthre	4-Bromophenyl phenyl ether	20.0	15.3	ug/L	_ 77	37 - 104
Di-n-butyl phthalate 20.0 14.2 ug/L 71 37 - 111 Diethyl phthalate 20.0 13.6 ug/L 68 36 - 109 Dimethyl phthalate 20.0 13.9 ug/L 69 37 - 106 Di-n-octyl phthalate 20.0 16.5 ug/L 82 11 - 127 3,3'-Dichlorobenzidine 20.0 13.6 ug/L 68 10 - 89 3,-Nitroaniline 20.0 13.6 ug/L 68 11 - 104 Fluoranthene 20.0 13.9 ug/L 69 32 - 112 Fluorene 20.0 14.3 ug/L 71 34 - 104 Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorobutadiene 20.0 13.9 ug/L 84 36 - 115 Hexachlorobutadiene 20.0 13.9 ug/L 69 32 - 94 Indexolf1,23-edipyrene	Dibenz(a,h)anthracene	20.0	14.8	ug/L	. 74	19 - 118
Diethyl phthalate 20.0 13.6 ug/L 68 36.109 Dimethyl phthalate 20.0 13.9 ug/L 69 37.106 Din-octyl phthalate 20.0 16.5 ug/L 82 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 10.89 3-Nitroaniline 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.9 ug/L 69 32.112 Fluorene 20.0 14.3 ug/L 71 34.104 Hexachlorobenzene 20.0 14.8 ug/L 71 35.102 Hexachloropethadiene 20.0 14.4 ug/L 72 35.100 Hexachloropethadiene 20.0 13.9 ug/L 69 32.94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22.115 Isophorone 20.0 14.9 ug/L 71 35.97 Nitrobenzene 20.0 14.9	Dibenzofuran	20.0	13.8	ug/L	_ 69	34 - 101
Dimethyl phthalate 20.0 13.9 ug/L 69 37.106 Din-octyl phthalate 20.0 16.5 ug/L 82 11.127 3,3-Dichlorobenzidine 20.0 13.6 ug/L 68 10.89 3-Nitroaniline 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.9 ug/L 68 11.104 Fluoranthene 20.0 14.3 ug/L 68 32.112 Fluorantene 20.0 14.3 ug/L 71 34.104 Hexachlorobezene 20.0 14.8 ug/L 72 35.102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35.102 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36.115 Hexachlorocyclopentadiene 20.0 13.9 ug/L 69 32.94 Indeno[1,2,3-cd]pyrene 20.0 14.9 ug/L 74 38.102 Isophorone 20.0 <	Di-n-butyl phthalate	20.0	14.2	ug/L	_ 71	37 - 111
Di-n-octyl phthalate 20.0 16.5 ug/L 82 11 - 127 3,3'-Dichlorobenzidine 20.0 13.6 ug/L 68 10 - 89 3-Nitroaniline 20.0 13.6 ug/L 68 11 - 104 Fluoranthene 20.0 13.9 ug/L 69 32 - 112 Fluorene 20.0 14.3 ug/L 71 34 - 104 Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachlorocyclopentadiene 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 32 - 94 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine	Diethyl phthalate	20.0	13.6	ug/L	_ 68	36 - 109
3,3'-Dichlorobenzidine 20.0 13.6 ug/L 68 10 - 89 3-Nitroaniline 20.0 13.6 ug/L 68 11 - 104 Fluoranthene 20.0 13.9 ug/L 69 32 - 112 Fluorene 20.0 14.3 ug/L 71 34 - 104 Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyene 20.	Dimethyl phthalate	20.0	13.9	ug/L	_ 69	37 - 106
3-Nitroaniline 20.0 13.6 ug/L 68 11.104 Fluoranthene 20.0 13.9 ug/L 69 32.112 Fluorene 20.0 14.3 ug/L 71 34.104 Hexachlorobenzene 20.0 14.8 ug/L 74 35.102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35.100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36.115 Hexachloroethane 20.0 13.9 ug/L 69 32.94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22.115 Isophorone 20.0 14.9 ug/L 74 38.102 Naphthalene 20.0 14.3 ug/L 71 35.97 Nitrobenzene 20.0 14.0 ug/L 70 37.100 N-Nitrosodi-n-propylamine 20.0 14.9 ug/L 75 32.102 Pyrene 20.0 14.9 ug/L 75 35.106 Phenol 20.0 14.9 ug/	Di-n-octyl phthalate	20.0	16.5	ug/L	. 82	11 - 127
Fluoranthene 20.0 13.9 ug/L 69 32 - 112 Fluorene 20.0 14.3 ug/L 71 34 - 104 Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 75 35 - 106 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 14.9 <td>3,3'-Dichlorobenzidine</td> <td>20.0</td> <td>13.6</td> <td>ug/L</td> <td>_ 68</td> <td>10 - 89</td>	3,3'-Dichlorobenzidine	20.0	13.6	ug/L	_ 68	10 - 89
Fluorene 20.0 14.3 ug/L 71 34 - 104 Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachlorocethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 <	3-Nitroaniline	20.0	13.6	ug/L	_ 68	11 - 104
Hexachlorobenzene 20.0 14.8 ug/L 74 35 - 102 Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Fluoranthene	20.0	13.9	ug/L	_ 69	32 - 112
Hexachlorobutadiene 20.0 14.4 ug/L 72 35 - 100 Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Fluorene	20.0	14.3	ug/L	. 71	34 - 104
Hexachlorocyclopentadiene 20.0 16.7 ug/L 84 36 - 115 Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Hexachlorobenzene	20.0	14.8	ug/L	_ 74	35 - 102
Hexachloroethane 20.0 13.9 ug/L 69 32 - 94 Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Hexachlorobutadiene	20.0	14.4	ug/L	. 72	35 - 100
Indeno[1,2,3-cd]pyrene 20.0 13.9 ug/L 69 22 - 115 Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Hexachlorocyclopentadiene	20.0	16.7	ug/L	. 84	36 - 115
Isophorone 20.0 14.9 ug/L 74 38 - 102 Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Hexachloroethane	20.0	13.9	ug/L	_ 69	32 - 94
Naphthalene 20.0 14.3 ug/L 71 35 - 97 Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Indeno[1,2,3-cd]pyrene	20.0	13.9	ug/L	_ 69	22 - 115
Nitrobenzene 20.0 14.0 ug/L 70 37 - 100 N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Isophorone	20.0	14.9	ug/L	. 74	38 - 102
N-Nitrosodiphenylamine 20.0 14.9 ug/L 75 32 - 102 N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Naphthalene	20.0	14.3	ug/L	_ 71	35 - 97
N-Nitrosodi-n-propylamine 20.0 14.7 ug/L 74 34 - 101 Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Nitrobenzene	20.0	14.0	ug/L	_ 70	37 - 100
Pyrene 20.0 14.9 ug/L 75 35 - 106 Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	N-Nitrosodiphenylamine	20.0	14.9	ug/L	. 75	32 - 102
Phenol 20.0 13.2 ug/L 66 32 - 95 Phenanthrene 20.0 14.9 ug/L 74 32 - 104	N-Nitrosodi-n-propylamine	20.0	14.7	ug/L	_ 74	34 - 101
Phenanthrene 20.0 14.9 ug/L 74 32 - 104	Pyrene	20.0	14.9	ug/L	. 75	35 _ 106
·	Phenol	20.0	13.2	ug/L	_ 66	32 - 95
Pentachlorophenol 20.0 12.4 ug/L 62 15 - 111	Phenanthrene	20.0	14.9	ug/L	74	32 - 104
	Pentachlorophenol	20.0	12.4	ug/L	. 62	15 _ 111

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	83		16 - 122
2-Fluorobiphenyl	76		19 - 107
2-Fluorophenol	78		10 - 111
Nitrobenzene-d5	70		23 - 112
Phenol-d5	73		15 - 112
Terphenyl-d14	76		10 - 132

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 180-19852/1-A

Matrix: Solid

Analysis Batch: 20620

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 19852

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0017	0.00022	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
4,4'-DDE	ND		0.0017	0.00025	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
4,4'-DDT	ND		0.0017	0.00025	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Aldrin	ND		0.0017	0.00030	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
alpha-BHC	ND		0.0017	0.00027	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
beta-BHC	ND		0.0017	0.00043	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
delta-BHC	ND		0.0017	0.00026	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Dieldrin	ND		0.0017	0.00028	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Endosulfan I	ND		0.0017	0.00031	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Endosulfan II	ND		0.0017	0.00029	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Endosulfan sulfate	ND		0.0017	0.00017	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Endrin	ND		0.0017	0.00032	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Diallate	ND		0.033	0.0028	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
gamma-BHC (Lindane)	ND		0.0017	0.00029	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
gamma-Chlordane	ND		0.0017	0.00033	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Heptachlor	ND		0.0017	0.00037	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Heptachlor epoxide	ND		0.0017	0.00032	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Methoxychlor	ND		0.0033	0.00035	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Toxaphene	ND		0.067	0.011	mg/Kg		11/07/11 04:27	11/11/11 18:18	1
Chlordane (technical)	ND		0.017	0.00073	mg/Kg		11/07/11 04:27	11/11/11 18:18	1

MB MB

MB MB

Sui	rogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tet	rachloro-m-xylene	97		45 - 130	1	1/07/11 04:27	11/11/11 18:18	1
Tet	rachloro-m-xylene	97		45 - 130	1	1/07/11 04:27	11/11/11 18:18	1
DC	B Decachlorobiphenyl (Surr)	101		45 - 130	1	1/07/11 04:27	11/11/11 18:18	1
DC	B Decachlorobiphenyl (Surr)	100		45 - 130	1	1/07/11 04:27	11/11/11 18:18	1

Lab Sample ID: LCS 180-19852/2-A

Matrix: Solid

Analysis Batch: 20620

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 19852

	Spike	LCS LCS	;			%Rec.	
Analyte	Added	Result Qua	lifier Unit	D	%Rec	Limits	
4,4'-DDD	0.0333	0.0303	mg/Kg		91	70 - 135	
4,4'-DDE	0.0333	0.0306	mg/Kg		92	70 - 133	
4,4'-DDT	0.0333	0.0314	mg/Kg		94	61 - 126	
Aldrin	0.0333	0.0303	mg/Kg		91	70 - 123	
alpha-BHC	0.0333	0.0311	mg/Kg		93	59 - 127	
beta-BHC	0.0333	0.0291	mg/Kg		87	70 - 138	
delta-BHC	0.0333	0.0303	mg/Kg		91	40 - 124	
Dieldrin	0.0333	0.0306	mg/Kg		92	70 - 123	
Endosulfan I	0.0333	0.0297	mg/Kg		89	70 - 126	
Endosulfan II	0.0333	0.0297	mg/Kg		89	70 - 128	
Endosulfan sulfate	0.0333	0.0286	mg/Kg		86	55 - 140	
Endrin	0.0333	0.0299	mg/Kg		90	70 - 127	
gamma-BHC (Lindane)	0.0333	0.0297	mg/Kg		89	66 - 124	
gamma-Chlordane	0.0333	0.0294	mg/Kg		88	68 - 123	
Heptachlor	0.0333	0.0299	mg/Kg		90	70 - 128	
Heptachlor epoxide	0.0333	0.0295	mg/Kg		89	69 - 131	
Methoxychlor	0.0333	0.0292	mg/Kg		87	70 - 143	

TestAmerica Job ID: 180-5622-1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 180-19852/2-A

Lab Sample ID: LCSD 180-19852/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 20620

Analysis Batch: 20620

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 19852

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	99		45 - 130
Tetrachloro-m-xylene	97		45 - 130
DCB Decachlorobiphenyl (Surr)	99		45 - 130
DCB Decachlorobiphenyl (Surr)	102		45 _ 130

Client Sample ID: Lab Control Sample Dup

Prep Batch: 19852

Prep Type: Total/NA

	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.0333	0.0308	mg/Kg		92	70 - 135	1	20
4,4'-DDE	0.0333	0.0308	mg/Kg		92	70 - 133	1	20
4,4'-DDT	0.0333	0.0319	mg/Kg		96	61 - 126	1	37
Aldrin	0.0333	0.0305	mg/Kg		91	70 - 123	1	20
alpha-BHC	0.0333	0.0309	mg/Kg		93	59 - 127	1	20
beta-BHC	0.0333	0.0297	mg/Kg		89	70 - 138	2	20
delta-BHC	0.0333	0.0303	mg/Kg		91	40 - 124	0	20
Dieldrin	0.0333	0.0308	mg/Kg		93	70 - 123	1	20
Endosulfan I	0.0333	0.0303	mg/Kg		91	70 - 126	2	23
Endosulfan II	0.0333	0.0306	mg/Kg		92	70 - 128	3	33
Endosulfan sulfate	0.0333	0.0295	mg/Kg		89	55 - 140	3	26
Endrin	0.0333	0.0311	mg/Kg		93	70 - 127	4	20
gamma-BHC (Lindane)	0.0333	0.0299	mg/Kg		90	66 - 124	0	20
gamma-Chlordane	0.0333	0.0298	mg/Kg		89	68 - 123	1	24
Heptachlor	0.0333	0.0304	mg/Kg		91	70 - 128	1	20
Heptachlor epoxide	0.0333	0.0302	mg/Kg		90	69 - 131	2	20
Methoxychlor	0.0333	0.0298	mg/Kg		89	70 - 143	2	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	98		45 - 130
Tetrachloro-m-xylene	94		45 - 130
DCB Decachlorobiphenyl (Surr)	98		45 - 130
DCB Decachlorobiphenyl (Surr)	97		45 - 130

Lab Sample ID: MB 180-20429/1-A

Matrix: Solid

Analysis Batch: 22196

Client	Sample	ID: Met	10d	Blank
	_	_	_	

Prep Type: Total/NA

29

	Prep Batch: 2042

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0017	0.00022	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
4,4'-DDE	ND		0.0017	0.00025	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
4,4'-DDT	ND		0.0017	0.00025	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Aldrin	ND		0.0017	0.00030	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
alpha-BHC	ND		0.0017	0.00027	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
beta-BHC	ND		0.0017	0.00043	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
delta-BHC	ND		0.0017	0.00026	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Dieldrin	ND		0.0017	0.00028	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Endosulfan I	ND		0.0017	0.00031	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Endosulfan II	ND		0.0017	0.00029	mg/Kg		11/11/11 03:17	11/30/11 17:25	1

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 180-20429/1-A

Matrix: Solid

Analysis Batch: 22196

Client Sample ID: Method Blank Prep Type: Total/NA

								Prep Batc	h: 20429
MB	MB								
Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	ND		0.0017	0.00017	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Endrin	ND		0.0017	0.00032	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Diallate	ND		0.033	0.0028	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
gamma-BHC (Lindane)	ND		0.0017	0.00029	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
gamma-Chlordane	ND		0.0017	0.00033	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Heptachlor	ND		0.0017	0.00037	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Heptachlor epoxide	ND		0.0017	0.00032	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Methoxychlor	ND		0.0033	0.00035	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Toxaphene	ND		0.067	0.011	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
Chlordane (technical)	ND		0.017	0.00073	mg/Kg		11/11/11 03:17	11/30/11 17:25	1
I and the second									

мв мв

	1112					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		45 - 130	11/11/11 03:17	11/30/11 17:25	1
Tetrachloro-m-xylene	79		45 _ 130	11/11/11 03:17	11/30/11 17:25	1
DCB Decachlorobiphenyl (Surr)	84		45 - 130	11/11/11 03:17	11/30/11 17:25	1
DCB Decachlorobiphenyl (Surr)	88		45 - 130	11/11/11 03:17	11/30/11 17:25	1

Lab Sample ID: LCS 180-20429/15-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 22196

Prep Type: Total/NA

Prep Batch: 20429

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	0.0333	0.0294		mg/Kg		88	70 - 135	
4,4'-DDE	0.0333	0.0281		mg/Kg		84	70 - 133	
4,4'-DDT	0.0333	0.0285		mg/Kg		86	61 - 126	
Aldrin	0.0333	0.0270		mg/Kg		81	70 - 123	
alpha-BHC	0.0333	0.0278		mg/Kg		83	59 ₋ 127	
beta-BHC	0.0333	0.0266		mg/Kg		80	70 - 138	
delta-BHC	0.0333	0.0278		mg/Kg		83	40 - 124	
Dieldrin	0.0333	0.0276		mg/Kg		83	70 - 123	
Endosulfan I	0.0333	0.0278		mg/Kg		83	70 - 126	
Endosulfan II	0.0333	0.0272		mg/Kg		82	70 - 128	
Endosulfan sulfate	0.0333	0.0292		mg/Kg		88	55 - 140	
Endrin	0.0333	0.0288		mg/Kg		86	70 - 127	
gamma-BHC (Lindane)	0.0333	0.0273		mg/Kg		82	66 - 124	
gamma-Chlordane	0.0333	0.0275		mg/Kg		83	68 _ 123	
Heptachlor	0.0333	0.0296		mg/Kg		89	70 - 128	
Heptachlor epoxide	0.0333	0.0279		mg/Kg		84	69 - 131	
Methoxychlor	0.0333	0.0318		mg/Kg		95	70 - 143	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits		
Tetrachloro-m-xylene	83		45 - 130		
Tetrachloro-m-xylene	87		45 - 130		
DCB Decachlorobiphenyl (Surr)	84		45 - 130		
DCB Decachlorobiphenvl (Surr)	91		45 - 130		

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 180-20429/16-A

Matrix: Solid

Analysis Batch: 22196

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 20429

	Spike	LCSD LCSI)			%Rec.		RPD
Analyte	Added	Result Quali	ifier Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.0333	0.0272	mg/Kg		82	70 - 135	10	20
4,4'-DDE	0.0333	0.0263	mg/Kg		79	70 - 133	7	20
4,4'-DDT	0.0333	0.0271	mg/Kg		81	61 - 126	5	37
Aldrin	0.0333	0.0265	mg/Kg		80	70 - 123	2	20
alpha-BHC	0.0333	0.0273	mg/Kg		82	59 - 127	2	20
beta-BHC	0.0333	0.0258	mg/Kg		77	70 - 138	3	20
delta-BHC	0.0333	0.0266	mg/Kg		80	40 - 124	4	20
Dieldrin	0.0333	0.0261	mg/Kg		78	70 - 123	5	20
Endosulfan I	0.0333	0.0277	mg/Kg		83	70 - 126	0	23
Endosulfan II	0.0333	0.0268	mg/Kg		80	70 - 128	1	33
Endosulfan sulfate	0.0333	0.0284	mg/Kg		85	55 - 140	3	26
Endrin	0.0333	0.0273	mg/Kg		82	70 - 127	5	20
gamma-BHC (Lindane)	0.0333	0.0266	mg/Kg		80	66 - 124	3	20
gamma-Chlordane	0.0333	0.0270	mg/Kg		81	68 - 123	2	24
Heptachlor	0.0333	0.0285	mg/Kg		86	70 - 128	4	20
Heptachlor epoxide	0.0333	0.0275	mg/Kg		83	69 - 131	0	20
Methoxychlor	0.0333	0.0313	mg/Kg		94	70 - 143	7	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	82		45 - 130
Tetrachloro-m-xylene	79		45 - 130
DCB Decachlorobiphenyl (Surr)	82		45 - 130
DCB Decachlorobiphenvl (Surr)	84		45 - 130

Lab Sample ID: MB 180-20610/1-A

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0017	0.00022	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1016	ND		0.017	0.0025	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
4,4'-DDE	ND		0.0017	0.00025	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1221	ND		0.017	0.0032	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
4,4'-DDT	ND		0.0017	0.00025	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1232	ND		0.017	0.0029	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Aldrin	ND		0.0017	0.00030	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1242	ND		0.017	0.0027	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
alpha-BHC	ND		0.0017	0.00027	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1248	ND		0.017	0.0016	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
beta-BHC	ND		0.0017	0.00043	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1254	ND		0.017	0.0024	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
delta-BHC	ND		0.0017	0.00026	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
PCB-1260	ND		0.017	0.0024	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Dieldrin	ND		0.0017	0.00028	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Endosulfan I	ND		0.0017	0.00031	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Endosulfan II	ND		0.0017	0.00029	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Endosulfan sulfate	ND		0.0017	0.00017	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Endrin	ND		0.0017	0.00032	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Diallate	ND		0.033	0.0028	mg/Kg		11/14/11 04:19	11/16/11 13:14	1

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 180-20610/1-A

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20610

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
gamma-BHC (Lindane)	ND		0.0017	0.00029	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
gamma-Chlordane	ND		0.0017	0.00033	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Heptachlor	ND		0.0017	0.00037	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Heptachlor epoxide	ND		0.0017	0.00032	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Methoxychlor	ND		0.0033	0.00035	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Toxaphene	ND		0.067	0.011	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
Chlordane (technical)	ND		0.017	0.00073	mg/Kg		11/14/11 04:19	11/16/11 13:14	1
I and the second									

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		45 - 130		1/14/11 04:19	11/16/11 13:14	1
Tetrachloro-m-xylene	97		45 - 130	1	1/14/11 04:19	11/16/11 13:14	1
DCB Decachlorobiphenyl (Surr)	98		45 - 130	1	1/14/11 04:19	11/16/11 13:14	1
DCB Decachlorobiphenyl (Surr)	96		45 - 130	1	1/14/11 04:19	11/16/11 13:14	1

Lab Sample ID: LCS 180-20610/2-A

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20610

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0333	0.0333		mg/Kg		100	70 - 135
4,4'-DDE	0.0333	0.0332		mg/Kg		100	70 - 133
4,4'-DDT	0.0333	0.0316		mg/Kg		95	61 - 126
Aldrin	0.0333	0.0336		mg/Kg		101	70 - 123
alpha-BHC	0.0333	0.0343		mg/Kg		103	59 - 127
beta-BHC	0.0333	0.0317		mg/Kg		95	70 - 138
delta-BHC	0.0333	0.0341		mg/Kg		102	40 - 124
Dieldrin	0.0333	0.0336		mg/Kg		101	70 - 123
Endosulfan I	0.0333	0.0328		mg/Kg		98	70 - 126
Endosulfan II	0.0333	0.0323		mg/Kg		97	70 - 128
Endosulfan sulfate	0.0333	0.0324		mg/Kg		97	55 - 140
Endrin	0.0333	0.0335		mg/Kg		101	70 - 127
gamma-BHC (Lindane)	0.0333	0.0331		mg/Kg		99	66 - 124
gamma-Chlordane	0.0333	0.0321		mg/Kg		96	68 - 123
Heptachlor	0.0333	0.0336		mg/Kg		101	70 - 128
Heptachlor epoxide	0.0333	0.0333		mg/Kg		100	69 - 131
Methoxychlor	0.0333	0.0299		mg/Kg		90	70 - 143

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	103		45 - 130
Tetrachloro-m-xylene	100		45 - 130
DCB Decachlorobiphenyl (Surr)	98		45 - 130
DCB Decachlorobiphenyl (Surr)	99		45 - 130

Lab Sample ID: 180-5830-1 MS

Matrix: Solid

Analysis Batch: 21047

Client Sample ID:	B-3(6')-11/10/11
Prep	Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	ND		0.0386	0.0114	JpF	mg/Kg	*	30	70 - 135	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 180-5830-1 MS

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: B-3(6')-11/10/11

Prep Type: Total/NA

Prep Batch: 20610

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDE	ND		0.0386	0.0257	F	mg/Kg	₽	67	70 - 133
4,4'-DDT	ND		0.0386	0.0258		mg/Kg	₽	67	61 - 126
Aldrin	ND		0.0386	ND	F	mg/Kg	\$	0	70 - 123
alpha-BHC	ND		0.0386	ND	F	mg/Kg	₽	0	59 - 127
beta-BHC	ND		0.0386	0.00669	JF	mg/Kg	₽	17	70 - 138
delta-BHC	ND		0.0386	0.0142	JpF	mg/Kg	₽	37	40 - 124
Dieldrin	0.012		0.0386	0.0320		mg/Kg	₽	83	70 - 123
Endosulfan I	ND		0.0386	0.0255	F	mg/Kg	₽	66	70 - 126
Endosulfan II	ND		0.0386	0.0147	JpF	mg/Kg	₽	38	70 - 128
Endosulfan sulfate	ND		0.0386	0.0124	JpF	mg/Kg	₽	32	55 - 140
Endrin	ND		0.0386	0.0261	F	mg/Kg	☼	68	70 - 127
gamma-BHC (Lindane)	0.028		0.0386	0.0286	рF	mg/Kg	₽	-7	66 - 124
gamma-Chlordane	ND		0.0386	0.0290		mg/Kg	₽	75	68 - 123
Heptachlor	ND		0.0386	0.0134	JpF	mg/Kg	☼	35	70 - 128
Heptachlor epoxide	ND		0.0386	0.0110	JpF	mg/Kg	₽	28	69 - 131
Methoxychlor	0.0092	Jр	0.0386	0.0319	JpF	mg/Kg	₩	59	70 - 143

MS MS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 45 - 130 21 pXDTetrachloro-m-xylene 83 D 45 - 130 DCB Decachlorobiphenyl (Surr) 83 D 45 - 130 DCB Decachlorobiphenyl (Surr) 9 p X D 45 - 130

Lab Sample ID: 180-5830-1 MSD

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: B-3(6')-11/10/11

Prep Type: Total/NA Prep Batch: 20610

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D ₩ 4,4'-DDD ND 0.0389 JpF 26 70 - 135 0.0101 mg/Kg 13 20 4,4'-DDE ND 0.0389 ₩ 70 - 133 0.0264 mg/Kg 68 3 20 ₩ 4,4'-DDT ND 0.0389 0.0250 61 - 126 mg/Kg 64 3 37 Ö Aldrin ND 0.0389 ND F 0 70 - 123 NC 20 mg/Kg ND F alpha-BHC NΠ 0.0389 mg/Kg 0 59 - 127 NC 20 beta-BHC ND 0.0389 ND F mg/Kg ₩ 0 70 - 138 20 delta-BHC ND 0.0389 0.0139 JpF ₽ 36 40 - 124 2 20 mg/Kg Ö Dieldrin 0.012 0.0389 0.0307 79 70 - 123 20 mg/Kg ₩ Endosulfan I ND 0.0389 70 - 126 0.0281 72 10 23 mg/Kg ₽ Endosulfan II ND 0.0389 0.0151 JpF 39 70 - 128 2 33 mg/Kg ₩ Endosulfan sulfate ND 0.0389 0.0112 JpF 29 55 - 140 10 26 mg/Kg ₩ Endrin ND 0.0389 0.0256 F mg/Kg 66 70 _ 127 2 20 gamma-BHC (Lindane) 0.028 0.0389 0.0279 pF mg/Kg ₩ -9 66 - 124 20 gamma-Chlordane ND 0.0389 68 - 123 0.0310 mg/Kg 80 24 0.0389 ₩ Heptachlor ND 0.0170 JpF mg/Kg 44 70 - 128 23 20 Heptachlor epoxide ND 0.0389 0.0117 JpF 30 69 _ 131 6 20 mg/Kg Methoxychlor 0.0092 Jp 0.0389 0.0673 F 149 70 - 143 26 mg/Kg

Surrogate	%Recovery	Qualifier	Limits		
Tetrachloro-m-xylene	22	pXD	45 - 130		
Tetrachloro-m-xylene	82	D	45 - 130		

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 180-5830-1 MSD

Matrix: Solid

Analysis Batch: 21047

Client Sample ID: B-3(6')-11/10/11

Prep Type: Total/NA

Prep Batch: 20610

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	98	D	45 - 130
DCB Decachlorobiphenyl (Surr)	11	pXD	45 - 130

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 180-19852/1-A

Matrix: Solid

Analysis Batch: 20980

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 19852

мв мв Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed PCB-1016 11/11/11 17:57 0.017 11/07/11 04:27 0.0025 mg/Kg ND PCB-1221 ND 11/07/11 04:27 0.017 0.0032 mg/Kg 11/11/11 17:57 PCB-1232 ND 0.017 0.0029 mg/Kg 11/07/11 04:27 11/11/11 17:57 PCB-1242 ND 0.017 0.0027 mg/Kg 11/07/11 04:27 11/11/11 17:57 PCB-1248 ND 11/11/11 17:57 0.017 0.0016 mg/Kg 11/07/11 04:27 PCB-1254 ND 0.017 0.0024 mg/Kg 11/07/11 04:27 11/11/11 17:57 PCB-1260 ND 0.017 0.0024 mg/Kg 11/07/11 04:27 11/11/11 17:57

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	107		35 - 140	11/07/11 04:27	11/11/11 17:57	1
DCB Decachlorobiphenyl (Surr)	106		35 - 140	11/07/11 04:27	11/11/11 17:57	1

Lab Sample ID: LCS 180-19852/4-A

Matrix: Solid

Analysis Batch: 20980

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 19852

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits D %Rec PCB-1016 1.33 1 26 mg/Kg 94 55 - 130 PCB-1260 1.33 1.28 mg/Kg 96 54 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	107		35 - 140
DCB Decachlorobiphenyl (Surr)	107		35 - 140

Lab Sample ID: LCSD 180-19852/5-A

Matrix: Solid

Analysis Batch: 20980

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 19852

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit PCB-1016 1.33 1.26 94 55 - 130 35 mg/Kg 0 PCB-1260 1.33 1.29 mg/Kg 96 54 - 130 29

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	105	35 _ 140
DCB Decachlorobiphenyl (Surr)	106	35 - 140

Project/Site: USS Clairton - C071418.13

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 180-20093/1-A

Analysis Batch: 20562

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 20093

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.017	0.0025	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1221	ND		0.017	0.0032	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1232	ND		0.017	0.0029	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1242	ND		0.017	0.0027	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1248	ND		0.017	0.0016	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1254	ND		0.017	0.0024	mg/Kg		11/09/11 02:59	11/10/11 01:30	1
PCB-1260	ND		0.017	0.0024	mg/Kg		11/09/11 02:59	11/10/11 01:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepa	red	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		35 - 140	11/09/11	02:59	11/10/11 01:30	1
DCB Decachlorobiphenyl (Surr)	110		35 - 140	11/09/11	02:59	11/10/11 01:30	1

Lab Sample ID: LCS 180-20093/2-A

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 20562 Prep Batch: 20093

	S	Spike LC	S LCS			%Rec.
Analyte	Ad	dded Resi	ılt Qualifier	Unit D	%Rec	Limits
PCB-1016		1.33	24	mg/Kg	93	55 - 130
PCB-1260		1.33	21	mg/Kg	91	54 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	103		35 - 140
DCB Decachlorobiphenyl (Surr)	101		35 - 140

M

Lab Sample ID: MB 180-20429/1-A		Client Sample ID: Method Blank
Matrix: Solid		Prep Type: Total/NA
Analysis Batch: 20923		Prep Batch: 20429
-	MB MB	

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.017	0.0025	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1221	ND		0.017	0.0032	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1232	ND		0.017	0.0029	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1242	ND		0.017	0.0027	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1248	ND		0.017	0.0016	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1254	ND		0.017	0.0024	mg/Kg		11/11/11 03:17	11/13/11 11:12	1
PCB-1260	ND		0.017	0.0024	mg/Kg		11/11/11 03:17	11/13/11 11:12	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		35 - 140		11/11/11 03:17	11/13/11 11:12	1
DCB Decachlorobiphenyl (Surr)	95		35 - 140	1	11/11/11 03:17	11/13/11 11:12	1

Lab Sample ID: LCS 180-20429/2-A

Matrix: Solid

Analysis Batch: 20923							Prep Batch: 20429	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.33	1.00		mg/Kg		75	55 - 130	
PCB-1260	1.33	0.965		mg/Kg		72	54 - 130	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 180-20429/2-A

Matrix: Solid

Surrogate

Analysis Batch: 20923

Client Sample ID: Lab Control Sample

Prep Batch: 20429

Prep Type: Total/NA

Limits %Recovery Qualifier 87 35 - 14079 35 - 140

Lab Sample ID: LCS 180-20610/5-A

Matrix: Solid

Tetrachloro-m-xylene

DCB Decachlorobiphenyl (Surr)

Analysis Batch: 21298

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20610

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits PCB-1016 1.33 1.27 95 55 - 130 mg/Kg PCB-1260 1.33 1.25 mg/Kg 94 54 - 130

LCS LCS

82

LCS LCS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 35 140 109 104 35 - 140 DCB Decachlorobiphenyl (Surr)

Lab Sample ID: 180-5830-1 MS Client Sample ID: B-3(6')-11/10/11

Matrix: Solid

Analysis Batch: 21298

Prep Type: Total/NA

Prep Batch: 20610

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 77 PCB-1016 ND 1.54 1.20 mg/Kg 77 55 - 130 ₩ PCB-1260 ND 1.54 1.20 mg/Kg 78 54 - 130

35 - 140

MS MS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 83 35 - 140

Lab Sample ID: 180-5830-1 MSD

Matrix: Solid

Analysis Batch: 21298

DCB Decachlorobiphenyl (Surr)

Client Sample ID: B-3(6')-11/10/11

Prep Type: Total/NA

Prep Batch: 20610

MSD MSD Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit ח %Rec Limits RPD Limit ₩ PCB-1016 ND 1.54 1.15 mg/Kg 75 55 - 130 35 PCB-1260 ND 1.54 mg/Kg 77 54 - 130 1 19 29

MSD MSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 84 35 - 140 DCB Decachlorobiphenyl (Surr) 84 35 - 140

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 180-20428/1-A

Matrix: Solid

Analysis Batch: 21225

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20428

20

MB MB

%Recovery Qualifier I imits Prepared Dil Fac Surrogate Analyzed 2,4-Dichlorophenylacetic acid 50 42 - 140 11/11/11 03:12 11/18/11 14:45

Project/Site: USS Clairton - C071418.13

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: MB 180-20428/1-A

Matrix: Solid

Analysis Batch: 21224

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20428

	IVID	ID IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,4-D	ND		0.080	0.0055	mg/Kg		11/11/11 03:12	11/18/11 15:10	20	
2,4,5-T	ND		0.020	0.0025	mg/Kg		11/11/11 03:12	11/18/11 15:10	20	
Silvex (2,4,5-TP)	ND		0.020	0.0021	mg/Kg		11/11/11 03:12	11/18/11 15:10	20	

MR MR

MD MD

Surrogate Qualifier Limits Prepared Analyzed Dil Fac %Recovery 11/11/11 03:12 2,4-Dichlorophenylacetic acid 56 42 - 140 11/18/11 15:10 20

Lab Sample ID: LCS 180-20428/2-A **Matrix: Solid**

Analysis Batch: 21225

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 20428

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit I	D %R	ec Limits	
2,4-D	0.320	0.121		mg/Kg	- :	38 30 - 140	
2,4,5-T	0.0800	0.0326		mg/Kg		41 30 - 140	
Silvex (2,4,5-TP)	0.0800	0.0457		mg/Kg	:	57 40 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 2,4-Dichlorophenylacetic acid 68 42 - 140

Lab Sample ID: LCS 180-20428/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 21224

Prep Type: Total/NA

Prep Batch: 20428

LCS LCS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 74 42 - 140

Lab Sample ID: 180-5679-2 MS

Matrix: Solid

Analysis Batch: 21225

Client Sample ID: B-4 (16')-11-7-11

Prep Type: Total/NA Prep Batch: 20428

Sample Sample Spike MS MS Qualifier Added Result Qualifier Limits Analyte Result Unit D %Rec ₩ 2,4-D ND 0.378 30 - 140 0.128 mg/Kg 34 ÷. 2,4,5-T ND 0.0945 30 - 140 0.0361 mg/Kg 38 ND 0.0945 Silvex (2,4,5-TP) 0.0557 59 40 - 130 mg/Kg

MS MS Surrogate %Recovery Qualifier Limits 66 42 - 140 2,4-Dichlorophenylacetic acid

Lab Sample ID: 180-5679-2 MS

Matrix: Solid

Analysis Batch: 21224

Client Sample ID: B-4 (16')-11-7-11 Prep Type: Total/NA

Prep Batch: 20428

MS MS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 67 42 - 140

Analysis Batch: 21225

Matrix: Solid

Surrogate

Project/Site: USS Clairton - C071418.13

Lab Sample ID: 180-5679-2 MSD

Method: 8151A - Herbicides (GC) (Continued)

Client Sample ID: B-4 (16')-11-7-11

TestAmerica Job ID: 180-5622-1

Prep Ty	/pe: Total/NA
Prep	Batch: 20428
%Rec.	RPD

	-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	2,4-D	ND		0.379	0.150		mg/Kg	₩	39	30 - 140	16	30
	2,4,5-T	ND		0.0947	0.0429		mg/Kg	₽	45	30 - 140	17	30
	Silvex (2,4,5-TP)	ND		0.0947	0.0600		mg/Kg	₽	63	40 - 130	7	30
ł												

MSD MSD %Recovery Qualifier Limits 69 42 - 140

Lab Sample ID: 180-5679-2 MSD

Matrix: Solid

Analysis Batch: 21224

2,4-Dichlorophenylacetic acid

Client Sample ID: B-4 (16')-11-7-11 Prep Type: Total/NA

Prep Batch: 20428

MSD MSD %Recovery Qualifier Surrogate Limits 2,4-Dichlorophenylacetic acid 42 - 140 70

Lab Sample ID: MB 180-20784/1-A

Matrix: Solid

Analysis Batch: 21225

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20784

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	58		42 - 140	11/15/11 10:04	11/18/11 09:51	20

Lab Sample ID: MB 180-20784/1-A

Matrix: Solid

Analysis Batch: 21224

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 20784

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		0.080	0.0055	mg/Kg		11/15/11 10:04	11/18/11 10:16	20
2,4,5-T	ND		0.020	0.0025	mg/Kg		11/15/11 10:04	11/18/11 10:16	20
Silvex (2,4,5-TP)	ND		0.020	0.0021	mg/Kg		11/15/11 10:04	11/18/11 10:16	20
	МВ	МВ							
Currogata	9/ Bassyany	Qualifier	Limita				Dronorod	Analyzad	Dil Eco

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2,4-Dichlorophenylacetic acid 62 42 - 140 11/15/11 10:04 11/18/11 10:16

Lab Sample ID: LCS 180-20784/2-A **Client Sample ID: Lab Control Sample**

> Prep Type: Total/NA Prep Batch: 20784

LCS LCS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 60 42 - 140

Lab Sample ID: LCS 180-20784/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 21224

Analysis Batch: 21225

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
2,4-D	 0.320	0.129	mg/Kg		40	30 - 140	
2,4,5-T	0.0800	0.0388	mg/Kg		48	30 - 140	
Silvex (2,4,5-TP)	0.0800	0.0490	mg/Kg		61	40 - 130	

Project/Site: USS Clairton - C071418.13

Method: 8151A - Herbicides (GC) (Continued)

Client Sample ID: Lab Control Sample

TestAmerica Job ID: 180-5622-1

Prep Type: Total/NA

Prep Batch: 20784

Lab Sample ID: LCS 180-20784/2-A

Matrix: Solid

Analysis Batch: 21224

LCS LCS

%Recovery Qualifier Limits Surrogate 2,4-Dichlorophenylacetic acid 42 - 140 66

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 20784

Lab Sample ID: LCSD 180-20784/3-A

Lab Sample ID: LCSD 180-20784/3-A

Matrix: Solid

Analysis Batch: 21225

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 70 42 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 21224

Prep Batch: 20784 %Rec. %Rec Limits RPD Limit

Analyte Added Result Qualifier Unit 2,4-D 0.320 0.147 46 30 mg/Kg 30 140 NaN 2,4,5-T 0.0800 0.0440 mg/Kg 55 30 - 140 13 30 Silvex (2,4,5-TP) 0.0800 0.0542 68 40 - 130 30 mg/Kg 10

LCSD LCSD

Spike

LCSD LCSD

%Recovery Qualifier Limits Surrogate 42 - 140 2,4-Dichlorophenylacetic acid 71

Method: 6010B - Lead

Lab Sample ID: MB 180-20226/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20612 Prep Batch: 20226

	MB	MB						
Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	20	9.7	ug/L		11/09/11 16:47	11/10/11 17:14	1
Antimony	ND	1	1.3	ug/L		11/09/11 16:47	11/10/11 17:14	1
Arsenic	ND	1	2.7	ug/L		11/09/11 16:47	11/10/11 17:14	1
Barium	ND	20	0.62	ug/L		11/09/11 16:47	11/10/11 17:14	1
Boron	ND	20	1.3	ug/L		11/09/11 16:47	11/10/11 17:14	1
Beryllium	ND	4.	0.23	ug/L		11/09/11 16:47	11/10/11 17:14	1
Cadmium	ND	5.	0.13	ug/L		11/09/11 16:47	11/10/11 17:14	1
Calcium	ND	500	9.7	ug/L		11/09/11 16:47	11/10/11 17:14	1
Chromium	ND	5.	0.57	ug/L		11/09/11 16:47	11/10/11 17:14	1
Cobalt	ND	5	0.40	ug/L		11/09/11 16:47	11/10/11 17:14	1
Copper	ND	2	5 2.7	ug/L		11/09/11 16:47	11/10/11 17:14	1
Iron	ND	10	12	ug/L		11/09/11 16:47	11/10/11 17:14	1
Lead	ND	3.	1.3	ug/L		11/09/11 16:47	11/10/11 17:14	1
Magnesium	ND	500	21	ug/L		11/09/11 16:47	11/10/11 17:14	1
Manganese	ND	1	5 0.68	ug/L		11/09/11 16:47	11/10/11 17:14	1
Nickel	ND	4	1.6	ug/L		11/09/11 16:47	11/10/11 17:14	1
Potassium	ND	500	750	ug/L		11/09/11 16:47	11/10/11 17:14	1
Selenium	ND	5.	3.0	ug/L		11/09/11 16:47	11/10/11 17:14	1
Silver	ND	5.	0.68	ug/L		11/09/11 16:47	11/10/11 17:14	1
Sodium	ND	500	220	ug/L		11/09/11 16:47	11/10/11 17:14	1
Thallium	ND	1	2.4	ug/L		11/09/11 16:47	11/10/11 17:14	1

20

3.83 J

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 6010B - Lead (Continued)

Lab Sample ID: MB 180-20226/1-A

Lab Sample ID: LCS 180-20226/2-A

Matrix: Water

Matrix: Water

Analyte

Zinc

Vanadium

Analysis Batch: 20612

Client Sample ID: Method Blank Prep Type: Total/NA

11/10/11 17:14

Prep Batch: 20226

 MB
 MB

 Result ND
 Qualifier
 RL RL Store St

2.5 ug/L

Client Sample ID: Lab Control Sample

11/09/11 16:47

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 20226

Analysis Batch: 20612							Prep Batch: 20220
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	2000	2020		ug/L		101	80 - 120
Antimony	500	518		ug/L		104	80 - 120
Arsenic	2000	2040		ug/L		102	80 - 120
Barium	2000	2040		ug/L		102	80 - 120
Boron	1000	1020		ug/L		102	80 - 120
Beryllium	50.0	51.4		ug/L		103	80 - 120
Cadmium	50.0	49.7		ug/L		99	80 - 120
Calcium	50000	50700		ug/L		101	80 - 120
Chromium	200	203		ug/L		102	80 - 120
Cobalt	500	500		ug/L		100	80 - 120
Copper	250	253		ug/L		101	80 - 120
Iron	1000	932		ug/L		93	80 - 120
Lead	500	505		ug/L		101	80 - 120
Magnesium	50000	51300		ug/L		103	80 - 120
Manganese	500	510		ug/L		102	80 - 120
Nickel	500	500		ug/L		100	80 - 120
Potassium	50000	52100		ug/L		104	80 _ 120
Selenium	2000	2020		ug/L		101	80 - 120
Silver	50.0	51.5		ug/L		103	80 - 120
Sodium	50000	51700		ug/L		103	80 _ 120
Thallium	2000	2030		ug/L		102	80 - 120
Vanadium	500	513		ug/L		103	80 - 120
Zinc	500	523		ug/L		105	80 _ 120

Lab Sample ID: 180-5679-4 MS

Matrix: Water

Analysis Batch: 20612

Client Sample ID: B-5W-11-8-11

Prep Type: Total/NA Prep Batch: 20226

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	500		2000	2610		ug/L		106	75 - 125	
Antimony	1.8	J	500	550		ug/L		110	75 _ 125	
Arsenic	6.1	J	2000	2170		ug/L		108	75 - 125	
Barium	91	J	2000	2240		ug/L		107	75 _ 125	
Boron	41	J	1000	1110		ug/L		107	75 - 125	
Beryllium	ND		50.0	53.4		ug/L		107	75 _ 125	
Cadmium	ND		50.0	50.9		ug/L		102	75 - 125	
Calcium	240000		50000	284000	4	ug/L		86	75 - 125	
Chromium	ND		200	211		ug/L		105	75 _ 125	
Cobalt	ND		500	519		ug/L		104	75 - 125	
Copper	ND		250	273		ug/L		109	75 _ 125	
Iron	280		1000	1250		ug/L		96	75 - 125	
Lead	ND		500	520		ua/L		104	75 - 125	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 6010B - Lead (Continued)

Lab Sample ID: 180-5679-4 MS

Matrix: Water

Analysis Batch: 20612

Client Sample ID: B-5W-11-8-11 Prep Type: Total/NA

Prep Batch: 20226

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Magnesium	ND		50000	52000		ug/L		104	75 - 125	
Manganese	ND		500	534		ug/L		107	75 _ 125	
Nickel	ND		500	518		ug/L		104	75 _ 125	
Potassium	36000		50000	92400		ug/L		113	75 - 125	
Selenium	14		2000	1940		ug/L		96	75 - 125	
Silver	ND		50.0	55.1		ug/L		110	75 - 125	
Sodium	200000		50000	251000	4	ug/L		98	75 _ 125	
Thallium	2.5	J	2000	2090		ug/L		104	75 - 125	
Vanadium	5.0	J	500	541		ug/L		107	75 - 125	
Zinc	5.8	JB	500	554		ug/L		110	75 _ 125	

Lab Sample ID: 180-5679-4 MSD Client Sample ID: B-5W-11-8-11

Matrix: Water

Analysis Batch: 20612

Prep Type: Total/NA

Analysis Batch: 20612									Prep	Batch:	20226
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	500		2000	2530		ug/L		102	75 - 125	3	20
Antimony	1.8	J	500	535		ug/L		107	75 - 125	3	20
Arsenic	6.1	J	2000	2120		ug/L		105	75 - 125	3	20
Barium	91	J	2000	2180		ug/L		105	75 ₋ 125	3	20
Boron	41	J	1000	1080		ug/L		104	75 - 125	2	20
Beryllium	ND		50.0	52.1		ug/L		104	75 - 125	2	20
Cadmium	ND		50.0	49.3		ug/L		99	75 - 125	3	20
Calcium	240000		50000	274000	4	ug/L		66	75 - 125	4	20
Chromium	ND		200	206		ug/L		103	75 - 125	2	20
Cobalt	ND		500	504		ug/L		101	75 - 125	3	20
Copper	ND		250	267		ug/L		107	75 - 125	2	20
Iron	280		1000	1240		ug/L		96	75 - 125	0	20
Lead	ND		500	509		ug/L		102	75 - 125	2	20
Magnesium	ND		50000	51300		ug/L		103	75 - 125	1	20
Manganese	ND		500	521		ug/L		104	75 - 125	3	20
Nickel	ND		500	502		ug/L		100	75 - 125	3	20
Potassium	36000		50000	90700		ug/L		110	75 - 125	2	20
Selenium	14		2000	1860		ug/L		92	75 - 125	4	20
Silver	ND		50.0	53.8		ug/L		108	75 ₋ 125	2	20
Sodium	200000		50000	244000	4	ug/L		85	75 - 125	3	20
Thallium	2.5	J	2000	2040		ug/L		102	75 - 125	2	20
Vanadium	5.0	J	500	526		ug/L		104	75 - 125	3	20
Zinc	5.8	JB	500	539		ug/L		107	75 - 125	3	20

Lab Sample ID: MB 180-20458/1-A

Matrix: Water

Analysis Batch: 20753

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20458

	INID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		200	9.7	ug/L		11/11/11 09:31	11/14/11 12:57	1
Antimony	ND		10	1.3	ug/L		11/11/11 09:31	11/14/11 12:57	1
Arsenic	ND		10	2.7	ug/L		11/11/11 09:31	11/14/11 12:57	1
Barium	ND		200	0.62	ug/L		11/11/11 09:31	11/14/11 12:57	1
Boron	ND		200	1.3	ug/L		11/11/11 09:31	11/14/11 12:57	1

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 6010B - Lead (Continued)

Lab Sample ID: MB 180-20458/1-A

Analysis Batch: 20753

Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA** Prep Batch: 20458

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		4.0	0.23	ug/L		11/11/11 09:31	11/14/11 12:57	1
Cadmium	ND		5.0	0.13	ug/L		11/11/11 09:31	11/14/11 12:57	1
Calcium	ND		5000	9.7	ug/L		11/11/11 09:31	11/14/11 12:57	1
Chromium	ND		5.0	0.57	ug/L		11/11/11 09:31	11/14/11 12:57	1
Cobalt	ND		50	0.40	ug/L		11/11/11 09:31	11/14/11 12:57	1
Copper	ND		25	2.7	ug/L		11/11/11 09:31	11/14/11 12:57	1
Iron	ND		100	12	ug/L		11/11/11 09:31	11/14/11 12:57	1
Lead	ND		3.0	1.3	ug/L		11/11/11 09:31	11/14/11 12:57	1
Magnesium	ND		5000	21	ug/L		11/11/11 09:31	11/14/11 12:57	1
Manganese	ND		15	0.68	ug/L		11/11/11 09:31	11/14/11 12:57	1
Nickel	ND		40	1.6	ug/L		11/11/11 09:31	11/14/11 12:57	1
Potassium	ND		5000	750	ug/L		11/11/11 09:31	11/14/11 12:57	1
Selenium	ND		5.0	3.0	ug/L		11/11/11 09:31	11/14/11 12:57	1
Silver	ND		5.0	0.68	ug/L		11/11/11 09:31	11/14/11 12:57	1
Sodium	ND		5000	220	ug/L		11/11/11 09:31	11/14/11 12:57	1
Thallium	2.74	J	10	2.4	ug/L		11/11/11 09:31	11/14/11 12:57	1
Vanadium	ND		50	1.9	ug/L		11/11/11 09:31	11/14/11 12:57	1
Zinc	5.63	J	20	2.5	ug/L		11/11/11 09:31	11/14/11 12:57	1

Lab Sample ID: LCS 180-20458/2-A

Matrix: Water

Analysis Batch: 20753

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 20458

%Rec.

	Opinc						/iitcc.	
Analyte	Added	Result	Qualifier (Jnit	D	%Rec	Limits	
Aluminum	2000	1960	i	ıg/L		98	80 - 120	
Antimony	500	509	ι	ıg/L		102	80 - 120	
Arsenic	2000	1940	ι	ıg/L		97	80 - 120	
Barium	2000	1970	i	ıg/L		98	80 - 120	
Boron	1000	969	ι	ıg/L		97	80 - 120	
Beryllium	50.0	48.1	ι	ıg/L		96	80 - 120	
Cadmium	50.0	47.1	ι	ıg/L		94	80 - 120	
Calcium	50000	50300	ι	ıg/L		101	80 - 120	
Chromium	200	192	ι	ıg/L		96	80 - 120	
Cobalt	500	468	ι	ıg/L		94	80 - 120	
Copper	250	245	ι	ıg/L		98	80 - 120	
Iron	1000	912	ι	ıg/L		91	80 - 120	
Lead	500	477	L	ıg/L		95	80 _ 120	
Magnesium	50000	49900	ι	ıg/L		100	80 - 120	
Manganese	500	481	ι	ıg/L		96	80 - 120	
Nickel	500	470	i	ıg/L		94	80 - 120	
Potassium	50000	49700	ι	ıg/L		99	80 - 120	
Selenium	2000	1900	ι	ıg/L		95	80 - 120	
Silver	50.0	49.0	Ü	ıg/L		98	80 _ 120	
Sodium	50000	50100	ι	ıg/L		100	80 - 120	
Thallium	2000	1920	ι	ıg/L		96	80 - 120	
Vanadium	500	487	i	ıg/L		97	80 - 120	
Zinc	500	494	ι	ıg/L		99	80 - 120	

Spike

LCS LCS

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 180-20649/1-A

Matrix: Solid

Analysis Batch: 20907

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20649

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.0	0.16	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Arsenic	ND		1.0	0.22	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Barium	0.154	J	20	0.050	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Boron	ND		20	0.26	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Beryllium	0.0340	J	0.40	0.015	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Cadmium	ND		0.50	0.024	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Chromium	ND		0.50	0.085	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Cobalt	ND		5.0	0.089	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Copper	ND		2.5	0.34	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Lead	ND		0.30	0.15	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Manganese	0.0860	J	1.5	0.048	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Nickel	ND		4.0	0.38	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Selenium	ND		0.50	0.21	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Silver	ND		0.50	0.058	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Thallium	ND		1.0	0.21	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Vanadium	ND		5.0	0.19	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Zinc	0.583	J	2.0	0.22	mg/Kg		11/14/11 10:12	11/15/11 16:21	1
Tin	ND		10	0.54	mg/Kg		11/14/11 10:12	11/15/11 16:21	1

Lab Sample ID: LCS 180-20649/2-A

Matrix: Solid

Analysis Batch: 20907

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20649

Analysis Batom 2000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	49.3		mg/Kg		99	80 - 120
Arsenic	200	195		mg/Kg		98	80 - 120
Barium	200	195		mg/Kg		97	80 - 120
Boron	100	95.6		mg/Kg		96	80 - 120
Beryllium	5.00	4.93		mg/Kg		99	80 - 120
Cadmium	5.00	4.80		mg/Kg		96	80 - 120
Chromium	20.0	19.6		mg/Kg		98	80 - 120
Cobalt	50.0	47.8		mg/Kg		96	80 - 120
Copper	25.0	24.4		mg/Kg		98	80 - 120
Lead	50.0	48.2		mg/Kg		96	80 - 120
Manganese	50.0	48.6		mg/Kg		97	80 - 120
Nickel	50.0	47.8		mg/Kg		96	80 - 120
Selenium	200	191		mg/Kg		95	80 - 120
Silver	5.00	4.93		mg/Kg		99	80 - 120
Thallium	200	195		mg/Kg		97	80 - 120
Vanadium	50.0	49.2		mg/Kg		98	80 - 120
Zinc	50.0	50.4		mg/Kg		101	80 - 120
Tin	200	199		mg/Kg		100	80 - 120

Lab Sample ID: MB 180-21862/1-A

Matrix: Solid

Analysis Batch: 22084

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 21862

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.0	0.16	mg/Kg		11/28/11 11:45	11/29/11 18:50	1
Arsenic	ND		1.0	0.22	ma/Ka		11/28/11 11:45	11/29/11 18:50	1

RL

20

20

0.40

0.50

0.50

5.0

2.5

0.30

1.5

4.0

0.50

0.50

1.0

5.0

2.0

10

MDL Unit

mg/Kg

0.54 mg/Kg

0.048 mg/Kg

0.050

0.26

0.015

0.024

0.085

0.089

0.34

0.15

0.38

0.21

0.058

0.21

0.19

0.22

D

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

11/28/11 11:45

MB MB Result Qualifier

0.128 J

ND

0.0530 J

ND

1.36

ND

0.337

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 180-21862/1-A

Lab Sample ID: LCS 180-21862/2-A

Matrix: Solid

Analyte

Barium

Boron

Beryllium

Cadmium

Chromium

Cobalt

Copper

Manganese

Lead

Nickel

Silver

Tin

Selenium

Thallium

Vanadium

Matrix: Solid

Analysis Batch: 22084

Client Sample ID: Method Blank

TestAmerica Job ID: 180-5622-1

Prep Batch: 21862

Prep Type: Total/NA

Dil Fac Prepared Analyzed 11/28/11 11:45 11/29/11 18:50 11/28/11 11:45 11/29/11 18:50 11/28/11 11:45 11/29/11 18:50 11/28/11 11:45 11/29/11 18:50 11/28/11 11:45 11/29/11 18:50 11/28/11 11:45 11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50

11/29/11 18:50 11/29/11 18:50

11/29/11 18:50

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21862

Analysis Batch: 22084 Spike LCS LCS Qualifier Limits Analyte Added Result Unit D %Rec Antimony 50.0 49.7 mg/Kg 99 80 - 120 Arsenic 200 197 mg/Kg 99 80 - 120 200 Barium 196 mg/Kg 98 80 _ 120 100 Boron 95.9 mg/Kg 96 80 - 120 Beryllium 5.00 5.01 100 80 - 120 mg/Kg 5.00 4.84 80 - 120 Cadmium mg/Kg 97 Chromium 20.0 19.7 mg/Kg 98 80 - 120 Cobalt 50.0 48.5 mg/Kg 97 80 - 120 25.0 24.5 98 80 _ 120 Copper mg/Kg Lead 50.0 48.8 98 80 - 120 mg/Kg 50.0 49.5 80 - 120 Manganese 99 mg/Kg Nickel 50.0 48.6 mg/Kg 97 80 - 120 Selenium 200 194 97 80 - 120 mg/Kg 5.00 Silver 5.00 mg/Kg 100 80 - 120Thallium 200 197 mg/Kg 98 80 - 120 50.0 49.6 80 _ 120 Vanadium mg/Kg 99 Zinc 50.0 51.3 103 80 - 120 mg/Kg Tin 200 202 mg/Kg 101 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-21429/1-A

Matrix: Water

Analysis Batch: 21608

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 21429

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 0.20 Mercury ND 0.038 ug/L 11/21/11 07:20 11/22/11 14:10

Spike

Added

MB MB

MB MB

мв мв Result Qualifier

ND

Qualifier

Result

ND

ND

Result Qualifier

2.50

Spike

Added

2.50

Spike

Added

0.417

RL

0.20

RL

0.033

LCS LCS

2.59

Result Qualifier

MDL Unit

0.038 ug/L

LCS LCS

2.37

Result Qualifier

MDL Unit

LCS LCS

0.413

Result Qualifier

MDL Unit

mg/Kg

0.011

LCS LCS

0.011 mg/Kg

Unit

ug/L

Unit

ug/L

Unit

mg/Kg

D

D

%Rec

Prepared

11/29/11 13:52

D

%Rec

Prepared

11/14/11 03:33

D

%Rec

99

95

104

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Client Sample ID: Lab Control Sample

Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

11/29/11 18:34

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

11/14/11 08:40

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

11/15/11 10:10

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 22012

Prep Type: Total/NA

Prep Batch: 20733

Prep Batch: 20733

Dil Fac

Prep Batch: 20604

Prep Batch: 20604

Dil Fac

Prep Batch: 22012

Prep Batch: 21429

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 180-21429/2-A **Matrix: Water**

Analysis Batch: 21608

Analyte

Analyte

Mercury

Mercury Lab Sample ID: MB 180-22012/1-A

Analysis Batch: 22054

Matrix: Water

Lab Sample ID: LCS 180-22012/2-A

Matrix: Water

Analysis Batch: 22054

Analyte

Mercury

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 180-20604/1-A **Matrix: Solid**

Analysis Batch: 20664

Analyte

Lab Sample ID: LCS 180-20604/2-A

Matrix: Solid

Mercury

Mercury

Mercury

Analysis Batch: 20664

Analyte

Lab Sample ID: MB 180-20733/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 20793

Analyte

Lab Sample ID: LCS 180-20733/2-A

Analysis Batch: 20793

Analyte

Added Mercury

0.417

Spike

RL

0.033

0.428

Result Qualifier Unit

mg/Kg

D

D %Rec

Prepared

11/15/11 03:50

103

Limits 80 - 120

Client Sample ID: Lab Control Sample

%Rec.

Dil Fac

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: MB 180-20886/1-A **Matrix: Solid**

Analysis Batch: 20949

мв мв

мв мв

ND

ND

ND

Result Qualifier

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.033 0.011 mg/Kg 11/16/11 03:30 Mercury ND 11/16/11 08:29

RL

RL

0.033

0.033

Spike Added

0.417

Spike

Added

0.417

Spike

Added

0.417

LCS LCS

0.428

Result Qualifier

MDL Unit

0.011 mg/Kg

LCS LCS

0.423

Result Qualifier

MDL Unit

0.011

LCS LCS

0.396

Result Qualifier

mg/Kg

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

D

D

%Rec

Prepared

%Rec

Prepared

11/30/11 07:50

D

%Rec

95

102

103

Lab Sample ID: LCS 180-20886/2-A

Matrix: Solid

Analysis Batch: 20949

Analyte

Mercury

Lab Sample ID: MB 180-21031/1-A

Matrix: Solid

Analysis Batch: 21070

Analyte

Mercury

Lab Sample ID: LCS 180-21031/2-A **Matrix: Solid**

Analysis Batch: 21070

Analyte

Mercury

Lab Sample ID: MB 180-22065/1-A

Matrix: Solid

Analysis Batch: 22130

MR MR Result Qualifier

Analyte

Mercury

Lab Sample ID: LCS 180-22065/2-A

Matrix: Solid

Mercury

Analysis Batch: 22130

Analyte

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 180-20809/1-A

Matrix: Water

Analysis Batch: 20954

MB MB

Analyte

HEM (Oil and Grease)

Result Qualifier RL MDL Unit

5.0

1.5 mg/L

Prepared

11/15/11 11:49

11/16/11 11:24

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20886

Prep Type: Total/NA

Prep Batch: 20886

Limits

Client Sample ID: Method Blank

80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21031

Analyzed Dil Fac 11/17/11 03:16 11/17/11 09:22

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 21031

%Rec.

Limits

80 _ 120 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 22065

Dil Fac Analyzed 11/30/11 11:47

Client Sample ID: Lab Control Sample

80 - 120

Prep Type: Total/NA

Prep Batch: 22065

Limits

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 20809

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 1664A - HEM and SGT-HEM (Continued)

Lab Sample ID: LCS 180-20809/2-A

Matrix: Water

Analysis Batch: 20954

Spike

LCS LCS

Result Qualifier Unit D %Rec Limits

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 20809

%Rec.

Analyte

Analyte Added Result Qualifier Unit D WRec Limits
HEM (Oil and Grease) 40.0 37.4 mg/L 94 78 - 114

Lab Sample ID: LCSD 180-20809/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 20954** Prep Batch: 20809 LCSD LCSD Spike RPD Added Result Qualifier Analyte Unit D %Rec Limits RPD Limit HEM (Oil and Grease) 40.0 37.9 mg/L 95 78 - 114 18

Lab Sample ID: MB 180-21139/1-A

Matrix: Water

Analysis Batch: 21266

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 21139

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac HEM (Oil and Grease) ND 5.0 1.5 mg/L 11/17/11 17:19 11/18/11 16:27

Lab Sample ID: LCS 180-21139/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 21266

Prep Batch: 21139

 Analyte
 Added Hem (Oil and Grease)
 Applied With the control of the co

Lab Sample ID: LCSD 180-21139/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 21266** Prep Batch: 21139 Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit Limit Analyte D %Rec Limits RPD HEM (Oil and Grease) 40.0 38.1 78 - 114 mg/L 95 18

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 180-20208/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 20377

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20208

мв мв Result Qualifier RLMDL Unit Analyte D Prepared Analyzed Dil Fac 11/09/11 16:00 Ammonia, distilled 0.0520 J 0.10 0.033 mg/L 11/10/11 14:01

Lab Sample ID: LCS 180-20208/2-A

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 20377 Prep Batch: 20208 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ammonia, distilled 2.00 2.20 mg/L 110 90 - 110

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 20786

Prep Batch: 20786

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: MB 180-20786/1-A

Matrix: Water

Analysis Batch: 20848

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.10 0.033 mg/L 11/15/11 10:00 Ammonia, distilled ND 11/15/11 14:35

Lab Sample ID: LCS 180-20786/2-A

Matrix: Water

Ammonia, distilled

Analyte

Analysis Batch: 20848

Spike Added 2.00

LCS LCS Result Qualifier 1.92

Unit mg/L

D %Rec 96

Limits 90 - 110

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 410.4 - COD

Lab Sample ID: MB 180-20242/41

Matrix: Water

Analysis Batch: 20242

MR MR

Qualifier Analyte Result RL MDL Unit Prepared Analyzed Dil Fac 10 Chemical Oxygen Demand ND 3.9 mg/L 11/09/11 17:32

Lab Sample ID: LCS 180-20242/14

Matrix: Water

Analysis Batch: 20242

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 600 630 105 90 - 110 Chemical Oxygen Demand mg/L

Lab Sample ID: LCSD 180-20242/15

Matrix: Water

Analysis Batch: 20242

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte Chemical Oxygen Demand 600 595 mg/L 99 90 - 110

Lab Sample ID: MB 180-20436/15

Matrix: Water

Analysis Batch: 20436

мв мв

MDL Unit Result Qualifier RLAnalyte D Prepared Analyzed Dil Fac Chemical Oxygen Demand 10 ND 3.9 mg/L 11/11/11 05:52

Lab Sample ID: LCS 180-20436/13

Matrix: Water

Analysis Batch: 20436

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chemical Oxygen Demand 600 584 mg/L 90 - 110

> TestAmerica Pittsburgh 12/14/2011

Page 164 of 204

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21663

Prep Batch: 21663

Prep Batch: 20517

Prep Batch: 20517

TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: 410.4 - COD (Continued)

Lab Sample ID: LCSD 180-20436/14 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20436

Client: GAI Consultants

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits Unit %Rec RPD Limit Analyte D 600 90 - 110 **Chemical Oxygen Demand** 580 mg/L 97 20

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 180-20517/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 21652

мв мв Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Cr (VI) 0.40 0.10 mg/Kg 11/18/11 10:00 11/22/11 15:08 ND

Lab Sample ID: LCSI 180-20517/3-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 21652

Spike LCSI LCSI Analyte Added Result Qualifier %Rec Limits Cr (VI) 708 676 mg/Kg 80 - 120

Lab Sample ID: LCSS 180-20517/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 21652

Prep Batch: 20517 LCSS LCSS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 20.0 18.8 mg/Kg 80 - 120 Cr (VI)

Lab Sample ID: MB 180-21663/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 21789

RL MDL Unit Analyte Result Qualifier D Prepared Dil Fac Analyzed Cr (VI) 0.40 11/23/11 09:29 ND 0.10 mg/Kg 11/26/11 12:09

Lab Sample ID: LCSI 180-21663/3-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 21789

LCSI LCSI Spike %Rec. Result Qualifier

Analyte Added Unit D %Rec Limits Cr (VI) 708 690 mg/Kg 98 80 - 120

Lab Sample ID: LCSS 180-21663/2-A Client Sample ID: Lab Control Sample

MR MR

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 21789** Prep Batch: 21663

Spike LCSS LCSS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Cr (VI) 20.0 19.2 mg/Kg 80 - 120 Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

75 ₋ 125

Prep Batch: 21997

Prep Type: Total/NA

82

Method: 7196A - Chromium, Hexavalent (Continued)

ND

Lab Sample ID: 180-5679-2 MSI Client Sample ID: B-4 (16')-11-7-11 **Matrix: Solid** Prep Type: Total/NA

Analyte

Cr (VI)

Analysis Batch: 21789

Prep Batch: 21663 Sample Sample Spike MSI MSI Result Qualifier Added Result Qualifier Unit Limits D %Rec

mg/Kg

691

Lab Sample ID: 180-5679-2 MSS Client Sample ID: B-4 (16')-11-7-11 **Matrix: Solid** Prep Type: Total/NA

847

Analysis Batch: 21789

Prep Batch: 21663 MSS MSS Sample Sample Spike Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits ₩ Cr (VI) ND 24.1 12.1 F mg/Kg 50 75 - 125

Lab Sample ID: 180-5679-2 DU Client Sample ID: B-4 (16')-11-7-11 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 21789

Prep Batch: 21663 DU DU Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Cr (VI) ND ND mg/Kg

Lab Sample ID: MB 180-21997/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 22373

MR MR

Result Qualifier RL MDL Unit Analyte Prepared Analyzed Cr (VI) ND 0.40 11/29/11 12:30 12/02/11 12:47 0.10 mg/Kg

Lab Sample ID: LCSI 180-21997/3-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 22373

Prep Batch: 21997 Spike LCSI LCSI %Rec. Added Result Qualifier Analyte Unit Limits %Rec Cr (VI) 708 699 80 - 120 mg/Kg 99

Lab Sample ID: LCSS 180-21997/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 22373

Prep Type: Total/NA Prep Batch: 21997 Spike LCSS LCSS

Analyte Added Result Qualifier Unit D %Rec Limits Cr (VI) 20.0 194 mg/Kg 97 80 - 120

Method: 7196A - Chromium, Hexavalent - RE

Lab Sample ID: MB 180-20516/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 21671

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cr (VI) - RE ND 0.40 0.10 mg/Kg 11/22/11 13:00 11/23/11 10:08

Prep Batch: 20516

80 - 120

Client Sample ID: Lab Control Sample

75 - 125

Cr (VI) - RE

Cr (VI) - RE

Project/Site: USS Clairton - C071418.13

Lab Sample ID: LCSS 180-21663/25-A

Method: 7196A - Chromium, Hexavalent - RE (Continued)

	Lab Sample ID: LCSI 180-20516/3-B Matrix: Solid Analysis Batch: 21671					Client S	Sample I	D: Lab Control Sample Prep Type: Total/NA Prep Batch: 2051	4
ı	•	Spike	LCSI	LCSI				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	

695

mg/Kg

Lab Sample ID: LCSS 180-20516/2-B					Client S	Sample I	D: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 21671							Prep Batch: 20516
	Spike	LCSS	LCSS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cr (VI) - RE	20.0	19.1		mg/Kg		95	80 - 120

Lab Sample ID: MB 180-21663/24-A						Client Samp	ie id: Method	Blank
Matrix: Solid						F	Prep Type: To	tal/NA
Analysis Batch: 21877							Prep Batch:	21663
MB	MB							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Cr (VI) - RE	ND	0.40	0.10 mg/Kg	11/23/11 09:29	11/28/11 14:56	1
Lab Sample ID: LCSI 180-21663/26-A				Client Sample II	D: Lab Control S	ample
Matrix: Solid					Prep Type: To	tal/NA

Analysis Batch: 21877							Prep	Batch:	21663
	Spike	LCSI	LCSI				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cr (VI) - RE	708	670		mg/Kg	_	95	80 - 120		

Matrix: Solid							Prep Type: To	tal/NA
Analysis Batch: 21877							Prep Batch:	21663
	Spike	LCSS	LCSS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cr (VI) - RE	20.0	20.0		mg/Kg		100	80 - 120	

Lab Sample ID: 180-5679-2 MSI							Clie	nt Samp	le ID: B-4 (16')-11-7-11
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 21877									Prep Batch: 21663
	Sample	Sample	Spike	MSI	MSI				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits

854

ND

740

mg/Kg

Lab Sample ID: 180-5679-2 MSS							Clie	ent Sam	ple ID: B-4	4 (16')-11-7-11
Matrix: Solid									Prep T	ype: Total/NA
Analysis Batch: 21877									Prep	Batch: 21663
	Sample	Sample	Spike	MSS	MSS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cr (VI) - RE	ND		23.6	11.6	F	mg/Kg	₩	49	75 - 125	
_										

<u></u>									
Lab Sample ID: 180-5679-2 DU						Client	Sample ID: B	-4 (16')-1	1-7-11
Matrix: Solid							Prep '	Type: To	tal/NA
Analysis Batch: 21877							Pre	p Batch:	21663
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Cr (VI) - RE	ND		 ND		mg/Kg	₩		NC	20

Matrix: Solid

Project/Site: USS Clairton - C071418.13

Lab Sample ID: MB 180-22322/1-A

TestAmerica Job ID: 180-5622-1

Method: 7196A - Chromium, Hexavalent - RE (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 22322

мв мв

MB MB

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.40 11/29/11 16:00 Cr (VI) - RE ND 0.10 mg/Kg 12/02/11 15:00

Lab Sample ID: LCSI 180-22322/3-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 22399

Analysis Batch: 22399

Prep Type: Total/NA

Prep Batch: 22322

LCSI LCSI Spike Added Result Qualifier Analyte Unit D %Rec Limits Cr (VI) - RE 708 613 mg/Kg 87 80 - 120

Lab Sample ID: LCSS 180-22322/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 22399

Prep Type: Total/NA

Prep Batch: 22322

Spike LCSS LCSS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Cr (VI) - RE 20.0 18.1 80 - 120 mg/Kg 90

Method: 9012A - Cyanide, Total and/or Amenable

Lab Sample ID: MB 180-20488/5-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 20640

Prep Type: Total/NA

Prep Batch: 20488

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 10 1.5 11/11/11 12:00 11/14/11 09:09 Cyanide, Total ug/L

Lab Sample ID: HLCS 180-20488/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 20640

Prep Type: Total/NA

Prep Batch: 20488

Spike HLCS HLCS %Rec.

Result Qualifier Added Unit Limits Analyte D %Rec 250 231 Cyanide, Total ug/L 93 90 - 110

Lab Sample ID: LCS 180-20488/3-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20640 Prep Batch: 20488

LCS LCS Spike %Rec.

Added Result Qualifier Analyte Unit D %Rec Limits Cyanide, Total 200 198 ug/L 99 85 - 115

Lab Sample ID: LCSD 180-20488/4-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 20640 Prep Batch: 20488 Spike LCSD LCSD %Rec. RPD

Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Cyanide, Total 200 196 ug/L 85 - 115

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 9012A - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: LLCS 180-20488/1-A

Matrix: Water

Analysis Batch: 20640

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 20488

Prep Type: Total/NA

Prep Type: Total/NA

Spike LLCS LLCS

Added Result Qualifier Analyte Unit %Rec Limits D 50.0 90 - 110 Cyanide, Total 48.5 ug/L 97

Method: 9040B - pH

Lab Sample ID: LCS 180-20111/1

Matrix: Water

Analysis Batch: 20111

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits рH 7.00 6.950 SU 99 - 101 99

Lab Sample ID: LCS 180-20339/1

Matrix: Water

Analysis Batch: 20339

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits SU рН 7.00 6.950 99 99 - 101

мв мв

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-20301/6

Matrix: Solid

Analysis Batch: 20301

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 0.679 J 1.0 0.22 mg/Kg 11/08/11 12:06 Nitrate as N 0.050 ND 0.015 mg/Kg 11/08/11 12:06 0.050 Nitrite as N 11/08/11 12:06 ND 0.016 mg/Kg Sulfate 0.635 J 1.0 0.12 mg/Kg 11/08/11 12:06

Lab Sample ID: LCS 180-20301/5

Matrix: Solid

Analysis Batch: 20301

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.8		mg/Kg		100	80 - 120	
Nitrate as N	2.50	2.51		mg/Kg		100	80 - 120	
Nitrite as N	2.50	2.34		mg/Kg		93	80 - 120	
Sulfate	50.0	49.2		ma/Ka		98	80 - 120	

Lab Sample ID: LCSD 180-20301/7

Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 20301**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	50.1		mg/Kg		100	80 - 120	1	20
Nitrate as N	2.50	2.51		mg/Kg		100	80 - 120	0	20
Nitrite as N	2.50	2.28		mg/Kg		91	80 - 120	2	20
Sulfate	50.0	49.1		mg/Kg		98	80 - 120	0	20

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 180-21086/6

Matrix: Solid

Analysis Batch: 21086

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 0.22 mg/Kg Chloride ND 1.0 11/16/11 11:29 Nitrate as N ND 0.050 0.015 mg/Kg 11/16/11 11:29 Nitrite as N ND 0.050 0.016 mg/Kg 11/16/11 11:29 Sulfate ND 11/16/11 11:29 1.0 0.12 mg/Kg

Lab Sample ID: LCS 180-21086/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 21086

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	50.2		mg/Kg		100	80 - 120	
Nitrate as N	2.50	2.52		mg/Kg		101	80 - 120	
Nitrite as N	2.50	2.30		mg/Kg		92	80 - 120	
Sulfate	50.0	49.5		mg/Kg		99	80 - 120	

Lab Sample ID: LCSD 180-21086/7 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 21086

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	50.1		mg/Kg		100	80 - 120	0	20
Nitrate as N	2.50	2.51		mg/Kg		100	80 - 120	0	20
Nitrite as N	2.50	2.30		mg/Kg		92	80 - 120	0	20
Sulfate	50.0	49.2		mg/Kg		98	80 - 120	1	20

Lab Sample ID: MB 180-21195/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 21195

MR MR

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	1.0	0.22	mg/Kg			11/17/11 12:05	1
Nitrate as N	ND	0.050	0.015	mg/Kg			11/17/11 12:05	1
Nitrite as N	ND	0.050	0.016	mg/Kg			11/17/11 12:05	1
Sulfate	0.665 J	1.0	0.12	mg/Kg			11/17/11 12:05	1

Lab Sample ID: LCS 180-21195/5 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 21195

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 50.0 50.4 mg/Kg 101 80 - 120 Nitrate as N 2.50 2.53 mg/Kg 80 - 120 101 Nitrite as N 2.50 2.55 102 80 - 120 mg/Kg Sulfate 50.0 80 - 120

mg/Kg

100

Lab Sample ID: LCSD 180-21195/7 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

50.0

Matrix: Solid

Analysis Batch: 21195

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	50.7		mg/Kg	_	101	80 - 120	0	20

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Soluble

Prep Type: Soluble

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 180-21195/7

Matrix: Solid

Analysis Batch: 21195

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 2.54 Nitrate as N 2 50 102 80 - 120 mg/Kg 0 20 Nitrite as N 2.50 2.55 mg/Kg 102 80 - 120 20 Sulfate 50.0 50.2 100 80 - 120 mg/Kg

Lab Sample ID: LB3 180-20041/6-A LB3

Matrix: Solid

Analysis Batch: 20301

LB3 LB3

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Chloride 10 ND 2.2 mg/Kg 11/08/11 19:45 Nitrate as N ND 0.50 0.15 mg/Kg 11/08/11 19:45 Nitrite as N ND 0.50 0.16 mg/Kg 11/08/11 19:45 Sulfate 7.81 10 1.2 mg/Kg 11/08/11 19:45

Lab Sample ID: LB3 180-21000/12-A LB3

Matrix: Solid

Analysis Batch: 21086

IB3 IB3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.68	J	10	2.2	mg/Kg			11/17/11 00:16	1
Nitrate as N	ND		0.50	0.15	mg/Kg			11/17/11 00:16	1
Nitrite as N	ND		0.50	0.16	mg/Kg			11/17/11 00:16	1
Sulfate	6.67	J	10	1.2	mg/Kg			11/17/11 00:16	1

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 180-20199/2

Matrix: Water

Analysis Batch: 20199

мв мв

RL MDL Unit Analyte Result Qualifier D Prepared Analyzed Dil Fac Total Suspended Solids ND 4.0 2.0 mg/L 11/09/11 14:15

Lab Sample ID: LCS 180-20199/1

Matrix: Water

Analysis Batch: 20199

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Suspended Solids 32.5 28.0 mg/L 80 - 120

Lab Sample ID: MB 180-20340/2

Matrix: Water

Analysis Batch: 20340									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	2.0	ma/L			11/10/11 12:16	

Prep Batch: 22389

Prep Batch: 22389

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 23998

Client: GAI Consultants

TestAmerica Job ID: 180-5622-1 Project/Site: USS Clairton - C071418.13

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 180-20340/1 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20340

Spike LCS LCS %Rec. Added Limits Result Qualifier Unit D %Rec Analyte 32.5 **Total Suspended Solids** 30.0 mg/L 92 80 _ 120

Method: SM 4500 CN E - Cyanide, Total

Lab Sample ID: MB 240-22389/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 22592 мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cyanide, Total 0.50 0.10 mg/Kg 11/08/11 14:34 11/09/11 14:57 ND

Lab Sample ID: LCS 240-22389/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 22592

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 2.25 2.14 mg/Kg 68 - 123

Lab Sample ID: MRL 240-22592/6 MRL Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 22592

MRL MRL Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.0100 0.0102 mg/L 70 - 130 Cyanide, Total 102

Lab Sample ID: MB 240-23998/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 24101

MR MR RL MDL Unit Result Qualifier D Prepared Dil Fac Analyte Analyzed 0.50 11/18/11 13:22 Cyanide, Total ND 0.10 mg/Kg 11/19/11 17:21

Lab Sample ID: LCS 240-23998/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 24101 Prep Batch: 23998 LCS LCS Spike %Rec. Result Qualifier Analyte Added Unit D %Rec Limits Cyanide, Total 2.25 2.12 mg/Kg 94 68 - 123

Lab Sample ID: MRL 240-24085/4 MRL Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 24085

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.0100 0.0101 mg/L 101 70 - 130

Project/Site: USS Clairton - C071418.13

Lab Sample ID: MB 240-23549/1-A

TestAmerica Job ID: 180-5622-1

Method: SM 4500 CN I - Cyanide, Weak Acid Dissociable

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 23549

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.50 Cyanide, Weak Acid Dissociable ND 0.16 mg/Kg 11/16/11 11:49 11/16/11 15:08

Lab Sample ID: LCS 240-23549/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Matrix: Solid

Analysis Batch: 23613

Analysis Batch: 23613

Prep Type: Total/NA

Prep Batch: 23549

LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Weak Acid Dissociable 2.00 1.67 mg/Kg 84 68 - 123

Client Sample ID: B-4 (6')-11-7-11 Lab Sample ID: 180-5679-1 MS

Matrix: Solid

Analysis Batch: 23613

Prep Type: Total/NA Prep Batch: 23549

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 2.39 2.50 105 68 - 123 Cyanide, Weak Acid Dissociable mg/Kg

Lab Sample ID: 180-5679-1 MSD Client Sample ID: B-4 (6')-11-7-11

Matrix: Solid

Analysis Batch: 23613

Prep Type: Total/NA

Prep Batch: 23549

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Unit %Rec Limits Limit ND 2.44 90 Cyanide, Weak Acid Dissociable 2 19 mg/Kg 68 123 20

Lab Sample ID: MRL 240-23613/6 MRL Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 23613

Spike MRL MRL %Rec. Added Result Qualifier Unit Analyte D %Rec Limits

Cyanide, Weak Acid Dissociable 0.0100 0.0101 mg/L 70 - 130 101

Lab Sample ID: MB 240-24526/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 24598

Prep Type: Total/NA Prep Batch: 24526

Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac ND 0.50 Cyanide, Weak Acid Dissociable 0.16 mg/Kg 11/23/11 10:23 11/23/11 15:25

Lab Sample ID: LCS 240-24526/2-A

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid Analysis Batch: 24598

MB MB

Prep Batch: 24526

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Weak Acid Dissociable 1.98 1.67 ^ mg/Kg 68 - 123

Lab Sample ID: 180-5830-2 MS Client Sample ID: B-3(16')-11/10/11 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 24598

Prep Batch: 24526

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.24 J^ ₩ Cyanide, Weak Acid Dissociable 2.29 2.54 mg/Kg 68 _ 123

QC Sample Results

Client: GAI Consultants TestAmerica Job ID: 180-5622-1

Project/Site: USS Clairton - C071418.13

Method: SM 4500 CN I - Cyanide, Weak Acid Dissociable (Continued)

Lab Sample ID: 180-5830-2 MSD						Client Sample	D: B-3(16')-11/1	10/11
Matrix: Solid							Prep Type: Tota	ıl/NA
Analysis Batch: 24598							Prep Batch: 2	4526
	Sample	Sample	Spike	MSD	MSD	O	%Rec.	RPD

	Sample	Sample	эріке	MISD	MISD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Weak Acid Dissociable	0.24	J ^	2.22	2.29	٨	mg/Kg	₩	92	68 - 123	11	20

Lab Sample ID: MRL 240-24598/6 MRL

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 24598

 Analyte
 Added Cyanide, Weak Acid Dissociable
 Spike MRL MRL
 MRL WRL
 WRec.

 O.0100
 Result Qualifier Dissociable
 Unit Dissociable
 D WRec Dissociable
 Limits Dissociable

2

4

5

7

8

9

J

11

46

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

GC/MS VOA

Prep Batch: 19864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	5035	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	5035	
LCS 180-19864/2-A	Lab Control Sample	Total/NA	Solid	5035	
MB 180-19864/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 19871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8260B	19864
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8260B	19864
LCS 180-19864/2-A	Lab Control Sample	Total/NA	Solid	8260B	19864
MB 180-19864/1-A	Method Blank	Total/NA	Solid	8260B	19864

Prep Batch: 19971

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Ba
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	5035	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	5035	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	5035	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	5035	
LCS 180-19971/2-A	Lab Control Sample	Total/NA	Solid	5035	
MB 180-19971/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 19977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8260B	19971
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8260B	19971
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8260B	19971
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8260B	19971
LCS 180-19971/2-A	Lab Control Sample	Total/NA	Solid	8260B	19971
MB 180-19971/1-A	Method Blank	Total/NA	Solid	8260B	19971

Prep Batch: 20106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	5035	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	5035	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	5035	
LCS 180-20106/2-A	Lab Control Sample	Total/NA	Solid	5035	
MB 180-20106/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 20110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8260B	20106
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8260B	20106
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8260B	20106
LCS 180-20106/2-A	Lab Control Sample	Total/NA	Solid	8260B	20106
MB 180-20106/1-A	Method Blank	Total/NA	Solid	8260B	20106

Prep Batch: 21046

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	5035	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	5035	
LCS 180-21046/2-A	Lab Control Sample	Total/NA	Solid	5035	
MB 180-21046/1-A	Method Blank	Total/NA	Solid	5035	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

GC/MS VOA (Continued)

Analysis Batch: 21048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8260B	21046
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8260B	21046
LCS 180-21046/2-A	Lab Control Sample	Total/NA	Solid	8260B	21046
MB 180-21046/1-A	Method Blank	Total/NA	Solid	8260B	21046

Analysis Batch: 21486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	8260B	
180-5679-5	B-4W-11-8-11	Total/NA	Water	8260B	
LCS 180-21486/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 180-21486/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 180-21486/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 21590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	8260B	
180-5712-2	B-1W-11-9-11	Total/NA	Water	8260B	
LCS 180-21590/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 180-21590/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 180-21590/4	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 19851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	3541	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	3541	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	3541	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	3541	
LCS 180-19851/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCSD 180-19851/3-A	Lab Control Sample Dup	Total/NA	Solid	3541	
MB 180-19851/1-A	Method Blank	Total/NA	Solid	3541	

Analysis Batch: 20338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8270C	19851
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8270C	19851
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8270C	19851
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8270C	19851
LCS 180-19851/2-A	Lab Control Sample	Total/NA	Solid	8270C	19851
LCSD 180-19851/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	19851
MB 180-19851/1-A	Method Blank	Total/NA	Solid	8270C	19851

Prep Batch: 20427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1 - RE	B-2 (6')-11/2/11	Total/NA	Solid	3541	
180-5526-2 - RE	B-2 (16')-11/2/11	Total/NA	Solid	3541	
180-5526-3 - RE	B-1 (6')-11/3/11	Total/NA	Solid	3541	
LCS 180-20427/2-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-20427/1-A	Method Blank	Total/NA	Solid	3541	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

GC/MS Semi VOA (Continued)

Prep Batch: 20447

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	3520C	
180-5679-4 - DL	B-5W-11-8-11	Total/NA	Water	3520C	
180-5679-5	B-4W-11-8-11	Total/NA	Water	3520C	
180-5679-5 - DL	B-4W-11-8-11	Total/NA	Water	3520C	
LCS 180-20447/2-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 180-20447/3-A	Lab Control Sample Dup	Total/NA	Water	3520C	

Prep Batch: 20532

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	3541	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	3541	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	3541	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	3541	
180-5679-2 MS	B-4 (16')-11-7-11	Total/NA	Solid	3541	
180-5679-2 MSD	B-4 (16')-11-7-11	Total/NA	Solid	3541	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	3541	
LCS 180-20532/2-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-20532/1-A	Method Blank	Total/NA	Solid	3541	

Analysis Batch: 20547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1 - RE	B-2 (6')-11/2/11	Total/NA	Solid	8270C	20427
180-5526-2 - RE	B-2 (16')-11/2/11	Total/NA	Solid	8270C	20427
180-5526-3 - RE	B-1 (6')-11/3/11	Total/NA	Solid	8270C	20427
LCS 180-20427/2-A	Lab Control Sample	Total/NA	Solid	8270C	20427
MB 180-20427/1-A	Method Blank	Total/NA	Solid	8270C	20427

Prep Batch: 20631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	3520C	_
180-5712-1 - DL	B-2W-11-9-11	Total/NA	Water	3520C	
180-5712-2	B-1W-11-9-11	Total/NA	Water	3520C	
180-5712-2 - DL	B-1W-11-9-11	Total/NA	Water	3520C	
LCS 180-20631/2-A	Lab Control Sample	Total/NA	Water	3520C	
MB 180-20631/1-A	Method Blank	Total/NA	Water	3520C	

Analysis Batch: 20744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	8270C LL	20447
180-5679-5	B-4W-11-8-11	Total/NA	Water	8270C LL	20447
LCS 180-20447/2-A	Lab Control Sample	Total/NA	Water	8270C LL	20447
LCSD 180-20447/3-A	Lab Control Sample Dup	Total/NA	Water	8270C LL	20447

Prep Batch: 20747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	3541	
LCS 180-20747/2-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-20747/1-A	Method Blank	Total/NA	Solid	3541	

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

GC/MS Semi VOA (Continued)

Analysis Batch: 20884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8270C	20532
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8270C	20532
180-5679-2 MSD	B-4 (16')-11-7-11	Total/NA	Solid	8270C	20532
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8270C	20532
LCS 180-20532/2-A	Lab Control Sample	Total/NA	Solid	8270C	20532
MB 180-20427/1-A	Method Blank	Total/NA	Solid	8270C	20427
MB 180-20532/1-A	Method Blank	Total/NA	Solid	8270C	20532

Analysis Batch: 20906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4 - DL	B-5W-11-8-11	Total/NA	Water	8270C LL	20447
180-5679-5 - DL	B-4W-11-8-11	Total/NA	Water	8270C LL	20447
LCS 180-20631/2-A	Lab Control Sample	Total/NA	Water	8270C LL	20631
MB 180-20631/1-A	Method Blank	Total/NA	Water	8270C LL	20631

Prep Batch: 21153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1 - RE	B-4 (6')-11-7-11	Total/NA	Solid	3541	
LCS 180-21153/2-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-21153/1-A	Method Blank	Total/NA	Solid	3541	

Analysis Batch: 21163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	8270C LL	20631
180-5712-2	B-1W-11-9-11	Total/NA	Water	8270C LL	20631

Analysis Batch: 21184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8270C	20532
180-5679-2 MS	B-4 (16')-11-7-11	Total/NA	Solid	8270C	20532

Analysis Batch: 21248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8270C	20747
LCS 180-20747/2-A	Lab Control Sample	Total/NA	Solid	8270C	20747
MB 180-20747/1-A	Method Blank	Total/NA	Solid	8270C	20747

Analysis Batch: 21296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1 - DL	B-2W-11-9-11	Total/NA	Water	8270C LL	20631
180-5712-2 - DL	B-1W-11-9-11	Total/NA	Water	8270C LL	20631

Analysis Batch: 21469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8270C	20532
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8270C	20747

Analysis Batch: 21730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1 - RE	B-4 (6')-11-7-11	Total/NA	Solid	8270C	21153
LCS 180-21153/2-A	Lab Control Sample	Total/NA	Solid	8270C	21153
MB 180-21153/1-A	Method Blank	Total/NA	Solid	8270C	21153

Project/Site: USS Clairton - C071418.13

tts TestAmerica Job ID: 180-5622-1

GC Semi VOA

Prep Batch: 19852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	3541	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	3541	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	3541	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	3541	
LCS 180-19852/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 180-19852/4-A	Lab Control Sample	Total/NA	Solid	3541	
LCSD 180-19852/3-A	Lab Control Sample Dup	Total/NA	Solid	3541	
LCSD 180-19852/5-A	Lab Control Sample Dup	Total/NA	Solid	3541	
MB 180-19852/1-A	Method Blank	Total/NA	Solid	3541	

Prep Batch: 20093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	3541	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	3541	
LCS 180-20093/2-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-20093/1-A	Method Blank	Total/NA	Solid	3541	

Prep Batch: 20428

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8151A	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8151A	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8151A	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8151A	
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8151A	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8151A	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8151A	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8151A	
180-5679-2 MS	B-4 (16')-11-7-11	Total/NA	Solid	8151A	
180-5679-2 MSD	B-4 (16')-11-7-11	Total/NA	Solid	8151A	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8151A	
LCS 180-20428/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 180-20428/1-A	Method Blank	Total/NA	Solid	8151A	

Prep Batch: 20429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	3541	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	3541	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	3541	
LCS 180-20429/15-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 180-20429/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCSD 180-20429/16-A	Lab Control Sample Dup	Total/NA	Solid	3541	
MB 180-20429/1-A	Method Blank	Total/NA	Solid	3541	

Analysis Batch: 20562

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8082	20093
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8082	20093
LCS 180-20093/2-A	Lab Control Sample	Total/NA	Solid	8082	20093
MB 180-20093/1-A	Method Blank	Total/NA	Solid	8082	20093

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

GC Semi VOA (Continued)

Prep Batch: 20610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	3541	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	3541	
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-1 MS	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-1 MS	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-1 MSD	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-1 MSD	B-3(6')-11/10/11	Total/NA	Solid	3541	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	3541	
LCS 180-20610/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 180-20610/5-A	Lab Control Sample	Total/NA	Solid	3541	
MB 180-20610/1-A	Method Blank	Total/NA	Solid	3541	

Analysis Batch: 20620

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8081A	19852
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8081A	19852
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8081A	19852
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8081A	19852
LCS 180-19852/2-A	Lab Control Sample	Total/NA	Solid	8081A	19852
LCSD 180-19852/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	19852
MB 180-19852/1-A	Method Blank	Total/NA	Solid	8081A	19852

Prep Batch: 20784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8151A	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8151A	
LCS 180-20784/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 180-20784/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	
MB 180-20784/1-A	Method Blank	Total/NA	Solid	8151A	

Analysis Batch: 20923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8082	20429
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8082	20429
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8082	20429
LCS 180-20429/2-A	Lab Control Sample	Total/NA	Solid	8082	20429
MB 180-20429/1-A	Method Blank	Total/NA	Solid	8082	20429

Analysis Batch: 20980

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8082	19852
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8082	19852
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8082	19852
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8082	19852
LCS 180-19852/4-A	Lab Control Sample	Total/NA	Solid	8082	19852
LCSD 180-19852/5-A	Lab Control Sample Dup	Total/NA	Solid	8082	19852
MB 180-19852/1-A	Method Blank	Total/NA	Solid	8082	19852

Analysis Batch: 21047

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8081A	20610
١	180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8081A	20610

TestAmerica Pittsburgh 12/14/2011

__

3

6

8

40

17

TestAmerica Job ID: 180-5622-1

Client: GAI Consultants Project/Site: USS Clairton - C071418.13

GC Semi VOA (Continued)

Analysis Batch: 21047 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8081A	20610
180-5830-1 MS	B-3(6')-11/10/11	Total/NA	Solid	8081A	20610
180-5830-1 MSD	B-3(6')-11/10/11	Total/NA	Solid	8081A	20610
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8081A	20610
LCS 180-20610/2-A	Lab Control Sample	Total/NA	Solid	8081A	20610
MB 180-20610/1-A	Method Blank	Total/NA	Solid	8081A	20610

Analysis Batch: 21224

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8151A	20428
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8151A	20428
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8151A	20428
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8151A	20428
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8151A	20428
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8151A	20428
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2 MS	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2 MSD	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8151A	20428
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8151A	20784
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8151A	20784
LCS 180-20428/2-A	Lab Control Sample	Total/NA	Solid	8151A	20428
LCS 180-20784/2-A	Lab Control Sample	Total/NA	Solid	8151A	20784
LCSD 180-20784/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	20784
MB 180-20428/1-A	Method Blank	Total/NA	Solid	8151A	20428
MB 180-20784/1-A	Method Blank	Total/NA	Solid	8151A	20784

Analysis Batch: 21225

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	8151A	20428
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	8151A	20428
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	8151A	20428
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	8151A	20428
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	8151A	20428
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	8151A	20428
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2 MS	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-2 MSD	B-4 (16')-11-7-11	Total/NA	Solid	8151A	20428
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8151A	20428
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8151A	20784
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8151A	20784
LCS 180-20428/2-A	Lab Control Sample	Total/NA	Solid	8151A	20428
LCS 180-20784/2-A	Lab Control Sample	Total/NA	Solid	8151A	20784
LCSD 180-20784/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	20784
MB 180-20428/1-A	Method Blank	Total/NA	Solid	8151A	20428
MB 180-20784/1-A	Method Blank	Total/NA	Solid	8151A	20784

Analysis Batch: 21298

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	8082	20610

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

GC Semi VOA (Continued)

Analysis Batch: 21298 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1 MS	B-3(6')-11/10/11	Total/NA	Solid	8082	20610
180-5830-1 MSD	B-3(6')-11/10/11	Total/NA	Solid	8082	20610
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	8082	20610
LCS 180-20610/5-A	Lab Control Sample	Total/NA	Solid	8082	20610

Analysis Batch: 22196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	8081A	20429
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	8081A	20429
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	8081A	20429
LCS 180-20429/15-A	Lab Control Sample	Total/NA	Solid	8081A	20429
LCSD 180-20429/16-A	Lab Control Sample Dup	Total/NA	Solid	8081A	20429
MB 180-20429/1-A	Method Blank	Total/NA	Solid	8081A	20429

Metals

Prep Batch: 20226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	3010A	
180-5679-4 MS	B-5W-11-8-11	Total/NA	Water	3010A	
180-5679-4 MSD	B-5W-11-8-11	Total/NA	Water	3010A	
180-5679-5	B-4W-11-8-11	Total/NA	Water	3010A	
LCS 180-20226/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 180-20226/1-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 20458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	3010A	
180-5712-2	B-1W-11-9-11	Total/NA	Water	3010A	
LCS 180-20458/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 180-20458/1-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 20604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	7471A	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	7471A	
LCS 180-20604/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 180-20604/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 20612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	6010B	20226
180-5679-4 MS	B-5W-11-8-11	Total/NA	Water	6010B	20226
180-5679-4 MSD	B-5W-11-8-11	Total/NA	Water	6010B	20226
180-5679-5	B-4W-11-8-11	Total/NA	Water	6010B	20226
LCS 180-20226/2-A	Lab Control Sample	Total/NA	Water	6010B	20226
MB 180-20226/1-A	Method Blank	Total/NA	Water	6010B	20226

Prep Batch: 20649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	3050B	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	3050B	

TestAmerica Pittsburgh 12/14/2011

Δ

5

6

8

10

11

12

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Metals (Continued)

Prep Batch: 20649 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	3050B	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	3050B	
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	3050B	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	3050B	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	3050B	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	3050B	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	3050B	
LCS 180-20649/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 180-20649/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 20664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	7471A	20604
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	7471A	20604
LCS 180-20604/2-A	Lab Control Sample	Total/NA	Solid	7471A	20604
MB 180-20604/1-A	Method Blank	Total/NA	Solid	7471A	20604

Prep Batch: 20733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	7471A	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	7471A	
LCS 180-20733/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 180-20733/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 20753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	6010B	20458
180-5712-2	B-1W-11-9-11	Total/NA	Water	6010B	20458
LCS 180-20458/2-A	Lab Control Sample	Total/NA	Water	6010B	20458
MB 180-20458/1-A	Method Blank	Total/NA	Water	6010B	20458

Analysis Batch: 20793

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	7471A	20733
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	7471A	20733
LCS 180-20733/2-A	Lab Control Sample	Total/NA	Solid	7471A	20733
MB 180-20733/1-A	Method Blank	Total/NA	Solid	7471A	20733

Prep Batch: 20886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	7471A	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	7471A	
LCS 180-20886/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 180-20886/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 20907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	6010B	20649
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	6010B	20649
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	6010B	20649
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	6010B	20649
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	6010B	20649

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Metals (Continued)

Analysis Batch: 20907 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	6010B	20649
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	6010B	20649
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	6010B	20649
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	6010B	20649
LCS 180-20649/2-A	Lab Control Sample	Total/NA	Solid	6010B	20649
MB 180-20649/1-A	Method Blank	Total/NA	Solid	6010B	20649

Analysis Batch: 20949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	7471A	20886
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	7471A	20886
LCS 180-20886/2-A	Lab Control Sample	Total/NA	Solid	7471A	20886
MB 180-20886/1-A	Method Blank	Total/NA	Solid	7471A	20886

Analysis Batch: 20987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	6010B	20649
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	6010B	20649
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	6010B	20649
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	6010B	20649
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	6010B	20649
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	6010B	20649

Prep Batch: 21031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	7471A	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	7471A	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	7471A	
LCS 180-21031/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 180-21031/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 21070

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	7471A	21031
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	7471A	21031
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	7471A	21031
LCS 180-21031/2-A	Lab Control Sample	Total/NA	Solid	7471A	21031
MB 180-21031/1-A	Method Blank	Total/NA	Solid	7471A	21031

Prep Batch: 21429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	7470A	
180-5679-5	B-4W-11-8-11	Total/NA	Water	7470A	
LCS 180-21429/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 180-21429/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 21608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	7470A	21429
180-5679-5	B-4W-11-8-11	Total/NA	Water	7470A	21429
LCS 180-21429/2-A	Lab Control Sample	Total/NA	Water	7470A	21429
MB 180-21429/1-A	Method Blank	Total/NA	Water	7470A	21429

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

Metals (Continued)

Prep Batch: 21862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	3050B	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	3050B	
LCS 180-21862/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 180-21862/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 22012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	7470A	
180-5712-2	B-1W-11-9-11	Total/NA	Water	7470A	
LCS 180-22012/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 180-22012/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 22054

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	7470A	22012
180-5712-2	B-1W-11-9-11	Total/NA	Water	7470A	22012
LCS 180-22012/2-A	Lab Control Sample	Total/NA	Water	7470A	22012
MB 180-22012/1-A	Method Blank	Total/NA	Water	7470A	22012

Prep Batch: 22065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	7471A	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	7471A	
LCS 180-22065/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 180-22065/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 22084

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	6010B	21862
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	6010B	21862
LCS 180-21862/2-A	Lab Control Sample	Total/NA	Solid	6010B	21862
MB 180-21862/1-A	Method Blank	Total/NA	Solid	6010B	21862

Analysis Batch: 22130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	7471A	22065
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	7471A	22065
LCS 180-22065/2-A	Lab Control Sample	Total/NA	Solid	7471A	22065
MB 180-22065/1-A	Method Blank	Total/NA	Solid	7471A	22065

Analysis Batch: 22209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	6010B	21862

General Chemistry

Analysis Batch: 19637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	Moisture	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	Moisture	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	Moisture	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	Moisture	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Analysis Batch: 19928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	Moisture	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	Moisture	

Leach Batch: 20041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Soluble	Solid	DI Leach	
180-5526-2	B-2 (16')-11/2/11	Soluble	Solid	DI Leach	
180-5526-3	B-1 (6')-11/3/11	Soluble	Solid	DI Leach	
180-5526-4	B-1 (15')-11/3/11	Soluble	Solid	DI Leach	
LB3 180-20041/6-A LB3	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 20111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	9040B	
180-5679-5	B-4W-11-8-11	Total/NA	Water	9040B	
LCS 180-20111/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 20199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	SM 2540D	
180-5679-5	B-4W-11-8-11	Total/NA	Water	SM 2540D	
LCS 180-20199/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 180-20199/2	Method Blank	Total/NA	Water	SM 2540D	

Prep Batch: 20208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	Distill/Ammonia
180-5679-5	B-4W-11-8-11	Total/NA	Water	Distill/Ammonia
LCS 180-20208/2-A	Lab Control Sample	Total/NA	Water	Distill/Ammonia
MB 180-20208/1-A	Method Blank	Total/NA	Water	Distill/Ammonia

Analysis Batch: 20220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	Moisture	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	Moisture	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	Moisture	

Analysis Batch: 20242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	410.4	
180-5679-5	B-4W-11-8-11	Total/NA	Water	410.4	
LCS 180-20242/14	Lab Control Sample	Total/NA	Water	410.4	
LCSD 180-20242/15	Lab Control Sample Dup	Total/NA	Water	410.4	
MB 180-20242/41	Method Blank	Total/NA	Water	410.4	

Analysis Batch: 20301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
180-5526-1	B-2 (6')-11/2/11	Soluble	Solid	9056A
180-5526-2	B-2 (16')-11/2/11	Soluble	Solid	9056A
180-5526-2	B-2 (16')-11/2/11	Soluble	Solid	9056A
180-5526-3	B-1 (6')-11/3/11	Soluble	Solid	9056A
180-5526-4	B-1 (15')-11/3/11	Soluble	Solid	9056A

TestAmerica Pittsburgh 12/14/2011

6

9

10

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Analysis Batch: 20301 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-4	B-1 (15')-11/3/11	Soluble	Solid	9056A	
LB3 180-20041/6-A LB3	Method Blank	Soluble	Solid	9056A	
LCS 180-20301/5	Lab Control Sample	Total/NA	Solid	9056A	
LCSD 180-20301/7	Lab Control Sample Dup	Total/NA	Solid	9056A	
MB 180-20301/6	Method Blank	Total/NA	Solid	9056A	

Analysis Batch: 20339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	9040B	
180-5712-2	B-1W-11-9-11	Total/NA	Water	9040B	
LCS 180-20339/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 20340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	SM 2540D	
180-5712-2	B-1W-11-9-11	Total/NA	Water	SM 2540D	
LCS 180-20340/1	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 180-20340/2	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 20377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	350.1	20208
180-5679-5	B-4W-11-8-11	Total/NA	Water	350.1	20208
LCS 180-20208/2-A	Lab Control Sample	Total/NA	Water	350.1	20208
MB 180-20208/1-A	Method Blank	Total/NA	Water	350.1	20208

Analysis Batch: 20436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	410.4	
180-5712-2	B-1W-11-9-11	Total/NA	Water	410.4	
LCS 180-20436/13	Lab Control Sample	Total/NA	Water	410.4	
LCSD 180-20436/14	Lab Control Sample Dup	Total/NA	Water	410.4	
MB 180-20436/15	Method Blank	Total/NA	Water	410.4	

Prep Batch: 20488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	9012A	
180-5679-5	B-4W-11-8-11	Total/NA	Water	9012A	
180-5712-1	B-2W-11-9-11	Total/NA	Water	9012A	
180-5712-2	B-1W-11-9-11	Total/NA	Water	9012A	
HLCS 180-20488/2-A	Lab Control Sample	Total/NA	Water	9012A	
LCS 180-20488/3-A	Lab Control Sample	Total/NA	Water	9012A	
LCSD 180-20488/4-A	Lab Control Sample Dup	Total/NA	Water	9012A	
LLCS 180-20488/1-A	Lab Control Sample	Total/NA	Water	9012A	
MB 180-20488/5-A	Method Blank	Total/NA	Water	9012A	

Prep Batch: 20516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1 - RE	B-2 (6')-11/2/11	Total/NA	Solid	3060A	
180-5526-2 - RE	B-2 (16')-11/2/11	Total/NA	Solid	3060A	
180-5526-3 - RE	B-1 (6')-11/3/11	Total/NA	Solid	3060A	
180-5526-4 - RE	B-1 (15')-11/3/11	Total/NA	Solid	3060A	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Prep Batch: 20516 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1 - RE	B-5(6')-11/4/11	Total/NA	Solid	3060A	
180-5622-2 - RE	B-5(16')-11/4/11	Total/NA	Solid	3060A	
LCSI 180-20516/3-B - RE	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-20516/2-B - RE	Lab Control Sample	Total/NA	Solid	3060A	
MB 180-20516/1-A - RE	Method Blank	Total/NA	Solid	3060A	

Prep Batch: 20517

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	3060A	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	3060A	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	3060A	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	3060A	
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	3060A	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	3060A	
LCSI 180-20517/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-20517/2-A	Lab Control Sample	Total/NA	Solid	3060A	
MB 180-20517/1-A	Method Blank	Total/NA	Solid	3060A	

Analysis Batch: 20557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	Moisture	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	Moisture	

Analysis Batch: 20640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	9012A	20488
180-5679-5	B-4W-11-8-11	Total/NA	Water	9012A	20488
180-5712-1	B-2W-11-9-11	Total/NA	Water	9012A	20488
180-5712-2	B-1W-11-9-11	Total/NA	Water	9012A	20488
HLCS 180-20488/2-A	Lab Control Sample	Total/NA	Water	9012A	20488
LCS 180-20488/3-A	Lab Control Sample	Total/NA	Water	9012A	20488
LCSD 180-20488/4-A	Lab Control Sample Dup	Total/NA	Water	9012A	20488
LLCS 180-20488/1-A	Lab Control Sample	Total/NA	Water	9012A	20488
MB 180-20488/5-A	Method Blank	Total/NA	Water	9012A	20488

Prep Batch: 20786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	Distill/Ammonia	_
180-5712-2	B-1W-11-9-11	Total/NA	Water	Distill/Ammonia	
LCS 180-20786/2-A	Lab Control Sample	Total/NA	Water	Distill/Ammonia	
MB 180-20786/1-A	Method Blank	Total/NA	Water	Distill/Ammonia	

Prep Batch: 20809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	1664A	
180-5679-5	B-4W-11-8-11	Total/NA	Water	1664A	
LCS 180-20809/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 180-20809/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 180-20809/1-A	Method Blank	Total/NA	Water	1664A	

TestAmerica Job ID: 180-5622-1 Project/Site: USS Clairton - C071418.13

General Chemistry (Continued)

Analysis Batch: 20848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	350.1	20786
180-5712-2	B-1W-11-9-11	Total/NA	Water	350.1	20786
LCS 180-20786/2-A	Lab Control Sample	Total/NA	Water	350.1	20786
MB 180-20786/1-A	Method Blank	Total/NA	Water	350.1	20786

Analysis Batch: 20954

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-4	B-5W-11-8-11	Total/NA	Water	1664A	20809
180-5679-5	B-4W-11-8-11	Total/NA	Water	1664A	20809
LCS 180-20809/2-A	Lab Control Sample	Total/NA	Water	1664A	20809
LCSD 180-20809/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	20809
MB 180-20809/1-A	Method Blank	Total/NA	Water	1664A	20809

Leach Batch: 21000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Soluble	Solid	DI Leach	
180-5622-2	B-5(16')-11/4/11	Soluble	Solid	DI Leach	
180-5679-1	B-4 (6')-11-7-11	Soluble	Solid	DI Leach	
180-5679-2	B-4 (16')-11-7-11	Soluble	Solid	DI Leach	
180-5679-3	B-6 (6')-11-8-11	Soluble	Solid	DI Leach	
180-5830-1	B-3(6')-11/10/11	Soluble	Solid	DI Leach	
180-5830-2	B-3(16')-11/10/11	Soluble	Solid	DI Leach	
LB3 180-21000/12-A LB3	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 21086

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Soluble	Solid	9056A	
180-5622-1	B-5(6')-11/4/11	Soluble	Solid	9056A	
180-5622-2	B-5(16')-11/4/11	Soluble	Solid	9056A	
180-5622-2	B-5(16')-11/4/11	Soluble	Solid	9056A	
180-5679-1	B-4 (6')-11-7-11	Soluble	Solid	9056A	
180-5679-2	B-4 (16')-11-7-11	Soluble	Solid	9056A	
180-5679-2	B-4 (16')-11-7-11	Soluble	Solid	9056A	
180-5679-3	B-6 (6')-11-8-11	Soluble	Solid	9056A	
180-5830-1	B-3(6')-11/10/11	Soluble	Solid	9056A	
180-5830-2	B-3(16')-11/10/11	Soluble	Solid	9056A	
LB3 180-21000/12-A LB3	Method Blank	Soluble	Solid	9056A	
LCS 180-21086/5	Lab Control Sample	Total/NA	Solid	9056A	
LCSD 180-21086/7	Lab Control Sample Dup	Total/NA	Solid	9056A	
MB 180-21086/6	Method Blank	Total/NA	Solid	9056A	

Prep Batch: 21139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	1664A	
180-5712-2	B-1W-11-9-11	Total/NA	Water	1664A	
LCS 180-21139/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 180-21139/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 180-21139/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 21195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Soluble	Solid	9056A	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Analysis Batch: 21195 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
LCS 180-21195/5	Lab Control Sample	Total/NA	Solid	9056A
LCSD 180-21195/7	Lab Control Sample Dup	Total/NA	Solid	9056A
MB 180-21195/6	Method Blank	Total/NA	Solid	9056A

Analysis Batch: 21266

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5712-1	B-2W-11-9-11	Total/NA	Water	1664A	21139
180-5712-2	B-1W-11-9-11	Total/NA	Water	1664A	21139
LCS 180-21139/2-A	Lab Control Sample	Total/NA	Water	1664A	21139
LCSD 180-21139/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	21139
MB 180-21139/1-A	Method Blank	Total/NA	Water	1664A	21139

Analysis Batch: 21652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	7196A	20517
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	7196A	20517
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	7196A	20517
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	7196A	20517
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	7196A	20517
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	7196A	20517
LCSI 180-20517/3-A	Lab Control Sample	Total/NA	Solid	7196A	20517
LCSS 180-20517/2-A	Lab Control Sample	Total/NA	Solid	7196A	20517
MB 180-20517/1-A	Method Blank	Total/NA	Solid	7196A	20517

Prep Batch: 21663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	3060A	
180-5679-1 - RE	B-4 (6')-11-7-11	Total/NA	Solid	3060A	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 - RE	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 DU	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 DU - RE	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 MSI	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 MSI - RE	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 MSS	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-2 MSS - RE	B-4 (16')-11-7-11	Total/NA	Solid	3060A	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	3060A	
180-5679-3 - RE	B-6 (6')-11-8-11	Total/NA	Solid	3060A	
LCSI 180-21663/26-A - RE	Lab Control Sample	Total/NA	Solid	3060A	
LCSI 180-21663/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-21663/25-A - RE	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-21663/2-A	Lab Control Sample	Total/NA	Solid	3060A	
MB 180-21663/1-A	Method Blank	Total/NA	Solid	3060A	
MB 180-21663/24-A - RE	Method Blank	Total/NA	Solid	3060A	

Analysis Batch: 21671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1 - RE	B-2 (6')-11/2/11	Total/NA	Solid	7196A	20516
180-5526-2 - RE	B-2 (16')-11/2/11	Total/NA	Solid	7196A	20516
180-5526-3 - RE	B-1 (6')-11/3/11	Total/NA	Solid	7196A	20516
180-5526-4 - RE	B-1 (15')-11/3/11	Total/NA	Solid	7196A	20516
180-5622-1 - RE	B-5(6')-11/4/11	Total/NA	Solid	7196A	20516

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Analysis Batch: 21671 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-2 - RE	B-5(16')-11/4/11	Total/NA	Solid	7196A	20516
LCSI 180-20516/3-B - RE	Lab Control Sample	Total/NA	Solid	7196A	20516
LCSS 180-20516/2-B - RE	Lab Control Sample	Total/NA	Solid	7196A	20516
MB 180-20516/1-A - RE	Method Blank	Total/NA	Solid	7196A	20516

Analysis Batch: 21789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 DU	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 MSI	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 MSS	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	7196A	21663
LCSI 180-21663/3-A	Lab Control Sample	Total/NA	Solid	7196A	21663
LCSS 180-21663/2-A	Lab Control Sample	Total/NA	Solid	7196A	21663
MB 180-21663/1-A	Method Blank	Total/NA	Solid	7196A	21663

Analysis Batch: 21877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5679-1 - RE	B-4 (6')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 - RE	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 DU - RE	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 MSI - RE	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-2 MSS - RE	B-4 (16')-11-7-11	Total/NA	Solid	7196A	21663
180-5679-3 - RE	B-6 (6')-11-8-11	Total/NA	Solid	7196A	21663
LCSI 180-21663/26-A - RE	Lab Control Sample	Total/NA	Solid	7196A	21663
LCSS 180-21663/25-A - RE	Lab Control Sample	Total/NA	Solid	7196A	21663
MB 180-21663/24-A - RE	Method Blank	Total/NA	Solid	7196A	21663

Analysis Batch: 21994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	7196A	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	7196A	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	7196A	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	7196A	

Prep Batch: 21997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	3060A	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	3060A	
LCSI 180-21997/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-21997/2-A	Lab Control Sample	Total/NA	Solid	3060A	
MB 180-21997/1-A	Method Blank	Total/NA	Solid	3060A	

Analysis Batch: 22030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	7196A	_
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	7196A	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	7196A	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	7196A	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	7196A	

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Prep Batch: 22322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1 - RE	B-3(6')-11/10/11	Total/NA	Solid	3060A	
180-5830-2 - RE	B-3(16')-11/10/11	Total/NA	Solid	3060A	
LCSI 180-22322/3-A - RE	Lab Control Sample	Total/NA	Solid	3060A	
LCSS 180-22322/2-A - RE	Lab Control Sample	Total/NA	Solid	3060A	
MB 180-22322/1-A - RE	Method Blank	Total/NA	Solid	3060A	

Analysis Batch: 22373

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	7196A	21997
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	7196A	21997
LCSI 180-21997/3-A	Lab Control Sample	Total/NA	Solid	7196A	21997
LCSS 180-21997/2-A	Lab Control Sample	Total/NA	Solid	7196A	21997
MB 180-21997/1-A	Method Blank	Total/NA	Solid	7196A	21997

Prep Batch: 22389

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	Distill/CN	
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	Distill/CN	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	Distill/CN	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	Distill/CN	
LCS 240-22389/2-A	Lab Control Sample	Total/NA	Solid	Distill/CN	
MB 240-22389/1-A	Method Blank	Total/NA	Solid	Distill/CN	

Analysis Batch: 22399

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1 - RE	B-3(6')-11/10/11	Total/NA	Solid	7196A	22322
180-5830-2 - RE	B-3(16')-11/10/11	Total/NA	Solid	7196A	22322
LCSI 180-22322/3-A - RE	Lab Control Sample	Total/NA	Solid	7196A	22322
LCSS 180-22322/2-A - RE	Lab Control Sample	Total/NA	Solid	7196A	22322
MB 180-22322/1-A - RE	Method Blank	Total/NA	Solid	7196A	22322

Analysis Batch: 22592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	SM 4500 CN E	22389
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	SM 4500 CN E	22389
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	SM 4500 CN E	22389
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	SM 4500 CN E	22389
LCS 240-22389/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN E	22389
MB 240-22389/1-A	Method Blank	Total/NA	Solid	SM 4500 CN E	22389
MRL 240-22592/6 MRL	Lab Control Sample	Total/NA	Solid	SM 4500 CN E	

Analysis Batch: 22785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	7196A	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	7196A	

Prep Batch: 23549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	SM 4500 CN I	- Trop Buton
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	SM 4500 CN I	
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	SM 4500 CN I	
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	SM 4500 CN I	

TestAmerica Pittsburgh 12/14/2011

_

6

8

11

19

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Prep Batch: 23549 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	SM 4500 CN I	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	SM 4500 CN I	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	
180-5679-1 MS	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	
180-5679-1 MSD	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	SM 4500 CN I	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	SM 4500 CN I	
LCS 240-23549/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	
MB 240-23549/1-A	Method Blank	Total/NA	Solid	SM 4500 CN I	

Analysis Batch: 23613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5526-1	B-2 (6')-11/2/11	Total/NA	Solid	SM 4500 CN I	23549
180-5526-2	B-2 (16')-11/2/11	Total/NA	Solid	SM 4500 CN I	23549
180-5526-3	B-1 (6')-11/3/11	Total/NA	Solid	SM 4500 CN I	23549
180-5526-4	B-1 (15')-11/3/11	Total/NA	Solid	SM 4500 CN I	23549
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	SM 4500 CN I	23549
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	SM 4500 CN I	23549
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	23549
180-5679-1 MS	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	23549
180-5679-1 MSD	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN I	23549
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	SM 4500 CN I	23549
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	SM 4500 CN I	23549
LCS 240-23549/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	23549
MB 240-23549/1-A	Method Blank	Total/NA	Solid	SM 4500 CN I	23549
MRL 240-23613/6 MRL	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	

Prep Batch: 23998

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	Distill/CN	
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	Distill/CN	
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	Distill/CN	
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	Distill/CN	
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	Distill/CN	
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	Distill/CN	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	Distill/CN	
LCS 240-23998/2-A	Lab Control Sample	Total/NA	Solid	Distill/CN	
MB 240-23998/1-A	Method Blank	Total/NA	Solid	Distill/CN	

Analysis Batch: 24085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MRL 240-24085/4 MRL	Lab Control Sample	Total/NA	Solid	SM 4500 CN E	

Analysis Batch: 24101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5622-1	B-5(6')-11/4/11	Total/NA	Solid	SM 4500 CN E	23998
180-5622-2	B-5(16')-11/4/11	Total/NA	Solid	SM 4500 CN E	23998
180-5679-1	B-4 (6')-11-7-11	Total/NA	Solid	SM 4500 CN E	23998
180-5679-2	B-4 (16')-11-7-11	Total/NA	Solid	SM 4500 CN E	23998
180-5679-3	B-6 (6')-11-8-11	Total/NA	Solid	SM 4500 CN E	23998
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	SM 4500 CN E	23998
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN E	23998

QC Association Summary

Client: GAI Consultants

Project/Site: USS Clairton - C071418.13

TestAmerica Job ID: 180-5622-1

General Chemistry (Continued)

Analysis Batch: 24101 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCS 240-23998/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN E	23998
ı	MB 240-23998/1-A	Method Blank	Total/NA	Solid	SM 4500 CN E	23998

Prep Batch: 24526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	SM 4500 CN I	
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	
180-5830-2 MS	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	
180-5830-2 MSD	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	
LCS 240-24526/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	
MB 240-24526/1-A	Method Blank	Total/NA	Solid	SM 4500 CN I	

Analysis Batch: 24598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-5830-1	B-3(6')-11/10/11	Total/NA	Solid	SM 4500 CN I	24526
180-5830-2	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	24526
180-5830-2 MS	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	24526
180-5830-2 MSD	B-3(16')-11/10/11	Total/NA	Solid	SM 4500 CN I	24526
LCS 240-24526/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	24526
MB 240-24526/1-A	Method Blank	Total/NA	Solid	SM 4500 CN I	24526
MRL 240-24598/6 MRL	Lab Control Sample	Total/NA	Solid	SM 4500 CN I	

2

4

^

7

8

10

44

Date/ Ame:	Company:	Received in Laboratory by:	confaity:	anniquestroi O).
11/3/11 11/5		Received by	1	Company of ASMAL)
Date Time:	(Company:	10:13 Received by Jan J. M. Carly	Company: Date/Tipe:	
		687	SCOPE #18008687	PERFORM ANALYSIS PER
Months	retained longer than I month) Archive For Archive For	wn Return to Client Disposal By Lab	Skin Intiant Denison B Unknown	Non-Hazard Flammable Skir
	Cotained Impart then I month	Carmin Diameter (A lea may be accessed if complete and		Possible Hazard Identification
				17.5
			11-3-11 9:58	B-1(15')-11/3/11
			1)-3-11 9:00 X	B-1 (6')-11/3/11
			11-2-11 8:50	B-2(16')-11/2/11
			11-2-11 8:20	B-2 (6)-11/2/11
Sample Specific Notes / Special Instructions:		H2SO4 HNO3 HCI NaOH ZnAc/ NaOH Unpres Other: (Elttered): Composi	Sample Date Sample Time Air Aqueous Sediment Solid Other:	Sample Identification .
		oves Sample (e=C/,	Martx	O#
Job/SDG No. 31 Table 10 Table		(Y/N) Grab≓r	Shipping/Tracking No:	C 7 14 18, 13
ab sampling	87		Method of Shipment/Carrier:	USS - CLAILTON
Walk-in client:		TAT if different from below		2002 9/ H-214
For an use only	Analyses	Analysis Turpraround Time (in Bills days)	T, BOULANGER CAPTONS COTTANTS CON	HOMESTERY)
of cocs		-804-8703		ERST WATER FROM DR.
Mark .	NATHY BORTZ	RAY GLENN Telephone:	JOHN BOLKNGER	GAT CONSULTANTS
TestAmerica Laboratories, Inc.	Lab Contact:	Site Contact: Lab	Client Project Manager:	ompany Name:
		NPDES RCRA Other	Regulatory program: DW	
THE LEADER IN ENVIRONMENTAL TESTING			TestAmerica Laboratory location:	TestA
TestAmerica	· · · · · · · · · · · · · · · · · · ·	Chain of Custody Record	(d)-S526 Cha	- (8)

TAL-0018 (1008)

F-31×1-1	Possible Hazard Identification Non-Hazard	Sample Identification $B-5(6')-11/4/11$ $B-5(16')-11/4/11$	Address: EWATTERONT DOC. City/State/Zip: HOMESTERN, PA- Phone: HOMESTERN, PA- Project Name: USS CLAI RTON Project Number: PO# CO71418,13	Company Name: Client Contact
Date/Time: Date/Time: Date/Time:	Poison B Unknown	Air Aqurous Sediment Solid Other: H2S04 HN03 HCI NaOH	Telephone: Teleph	Client Project M. Chain of Custody Record Chain of Custody Record Client Project M. Client M. Client Project M. Client M
Archive For Company: Laboratory by: Company: Sample Disposal (A fee may be assessed if samples are retained longer than	NaOH ZDAC/ NAOH Unpres Other: Filtered Sample (V.) Composite: C/Gap PEL SCOPE 1800 868	9763 8 de 1711 10 de 1811		
Date Time: Date Time: Date Time: Date Time: Date Time:		Sample Specific Notes / Special Instructions:	TESTAMETICA Laborator, COC. No.: of COC.s Exitation with the state of COC.s Exitation with the state of COC.s Exitation with the state of COC.s	TestAn

	Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by:	Possible Hazard identification Non-Hazard Flammable Special Instructions/QC Requirements & Comments:	B-4W-11-8-11	والم الم	Sample Identification $\mathcal{B} \sim \mathcal{H}(G') \sim \mathcal{H} \cdot \mathcal{I} \sim \mathcal{H}$	Project Name: USS -CLAIRTON Project Number: COTIHIS, IS PO#	City/State/Zity: HOMESTEAN, IT	Chert Costs iny Name:	
	Company: Company: Company: Date Time: Date Time:	Skin Irriant Poison B Unknown	1	1 // 'N .L	Sample Date Sample Time Aqueous Sedimen		I MULANGUE C CALCUSCLANACUA	Client Project Manager: To # J BOLANICOZ Telephone:	[80-5679] Chain TestAmerica Laboratory location: Regulatory program: Dw [
t ^a	Received by: Received in Laboratory by:	Sample Disposal (A fee may be assessed if samples ar			Com	ed Sample (X / N) posite=C / Grab=G	And	Sile Contact: TOTY GUSTN N Telephone: 1 2 - 964-8763 Telephone:	Chain of Custody Record PC + NPDES RCRA Other
	Company:	e retained longer than I month) Archive For			X Pe	R SCOPÉ 9008687	Analyses	the Contract:	
TAL-0018 (1008)	Date/Time: Date/Time:	Months	W AI CIC	SOIL MOSMACE	Soll Soll	John Service Parties / Sample Specific Notes /	Walle in China Chi	of Cocs	ESTAMETICA TestAmerica Laboratories, Inc.

Day NADLY Company Company	Relinquished by Relinquished by Relinquished by Relinquished by Relinquished by Relinquished by	Possible Hazard Identification Possible Hazard Identification Non-Bazard Poison B Skin irritant Poison B	Sample Identification Sample Date Sample Time $\mathcal{B} - \mathcal{A} \mathcal{W} - \{1 - \mathcal{P} - I\}$ $\mathcal{B} - \{ \mathcal{W} - \{1 - \mathcal{P} - I\} \}$ $\mathcal{B} - \{ \mathcal{W} - \{1 - \mathcal{P} - I\} \}$ $\mathcal{B} - \{ \mathcal{W} - \{1 - \mathcal{P} - I\} \}$	WATERFRONT DR. WATERFRONT DR. WATERFRONT DR. USS CLAINTON Number: (071418,13	TestA
Analyses Analyses Analyses Company Company Company Company Company Company Company	Date/Time: Date/Date/Time: Date/Time: Date/Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	Unknown Sample	Air Aqueous Sediment Solid Other: H2SO4 HNO3 Contained NaOH ZnAcr NaOH Unpres Other: Filtered Samp	Telephone: 1 2 - 884 8763 Analysis Furnaround Time Mallysis Furnaround Time TAT i different from below TAT i different from below 2 weeks 2 days 1 day 1 day 2 days	DW NPDES RCRA Other
IN ENVIRONMENTAL TEST No: Of CCCs at client:	Company Date Company: Co	retained longer than I month) Archive For	Pels 180	Telephone: Telephone: Analyses	Lab Contact:

Kelinquisned by:	Relinquished by:	Relinquished by 12 1800 868	ard Identification azard				B-3 (16')-11/12/11	B-3(61)-11/10/11	Sample Identification	FO 1418-15	Project Number:	112-476-2000 Project Name:	HOMESTEAD PA	Address: AMATICALFACINT DRIVE	Name;	nt Contact	Test	330 0.3#3
		Company: CAT Date/Time:	Irritant Poison B				n/10/11 10/00	n/10/11 9:00	Sample Date Sample Time Air Aqueous Sediment Solid	Matux	Shipping/Tracking No:	Method of Shipment/Carrier:	J. BOIL ANGEL & CA 10000 WIRN'S CO		Telenhone:		TestAmerica Laboratory location: 7 G	H
	ne: Received in Laboratory by:	Received by:	Unknown Return to Client Disposal By Lab	Sample Disposal (A fee may be assessed if samp						il Samp	(Y/N)	3 weeks	Analysis Terramental Titre (in BUS toys) TAT if different from below	412 804 8703	ry ccand	Site Contact:	NPDES RCRA Other	Chain of Custody Record
	Company:	Company: Company:	_ Attuites to,	e retained longer than 1 month)				X X X X X X X X X X	19 19	2 50 60	868	7	Analyses		Hith BORT	Lab Contact:		
TAL-0018 (1008)	Date/Time:	Date/Time:		Months					Special Instructions:	Sample Specific Notes /	Jobystorino		wall-in clien	For Jab use only	of cocs	COC No:	TestAmerica Laboratories, Inc.	THE LEADER IN ENVIRONMENTAL TESTING

Login Sample Receipt Checklist

Client: GAI Consultants Job Number: 180-5526-1

Login Number: 5526 List Source: TestAmerica Pittsburgh

List Number: 1

Creator: O'Donnell, Brandon R

oreator. O Donnell, Brandon N	
Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

4

6

R

_

44

Login Sample Receipt Checklist

Client: GAI Consultants Job Number: 180-5526-1

List Source: TestAmerica North Canton
List Number: 1
List Creation: 11/05/11 01:00 PM

Creator: Ferrel, Matthew

Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

4

6

8

10

11

Login Container Summary Report

180-5679

Temperature readings: Container Preservative Lab ID Container Type pН Added (mls) Lot# Client Sample ID Clear Glass 8oz Wide -180-5679-A-1 B-4 (6')-11-7-11 180-5679-B-1 Clear Glass 8oz Wide -B-4 (6')-11-7-11 Clear Glass 4oz Wide -B-4 (6')-11-7-11 180-5679-C-1 VOA Terracore Kit - Greenwood 180-5679-D-1 B-4 (6')-11-7-11 VOA Terracore Kit - Greenwood B-4 (6')-11-7-11 180-5679-E-1 B-4 (6')-11-7-11 180-5679-F-1 VOA Terracore Kit - Greenwood Clear Glass 8oz Wide -B-4 (16')-11-7-11 180-5679-A-2 B-4 (16')-11-7-11 180-5679-B-2 Clear Glass 8oz Wide -B-4 (16')-11-7-11 180-5679-C-2 Clear Glass 4oz Wide -B-4 (16')-11-7-11 180-5679-D-2 VOA Terracore Kit - Greenwood VOA Terracore Kit - Greenwood B-4 (16')-11-7-11 180-5679-E-2 VOA Terracore Kit - Greenwood B-4 (16')-11-7-11 180-5679-F-2 Clear Glass 8oz Wide -B-6 (6')-11-7-11 180-5679-A-3 Clear Glass 8oz Wide -B-6 (6')-11-7-11 180-5679-B-3 Clear Glass 4oz Wide -180-5679-C-3 B-6 (6')-11-7-11 VOA Terracore Kit - Greenwood B-6 (6')-11-7-11 180-5679-D-3 VOA Terracore Kit - Greenwood B-6 (6')-11-7-11 180-5679-E-3 180-5679-F-3 VOA Terracore Kit - Greenwood B-6 (6')-11-7-11 Amber Glass 1 liter - unpreserved B-5W-11-8-11 180-5679-A-4 Amber Glass 1 liter - unpreserved B-5W-11-8-11 180-5679-B-4 7 B-5W-11-8-11 180-5679-C-4 Amber Glass 1 liter - Hydrochloric 7 Amber Glass 1 liter - Hydrochloric B-5W-11-8-11 180-5679-D-4 Plastic 500ml - with Nitric Acid B-5W-11-8-11 180-5679-E-4 t3B-5W-11-8-11 180-5679-F-4 Plastic 250ml - with Sodium B-5W-11-8-11 180-5679-G-4 Plastic 250ml - with Sulfuric Acid Plastic 250ml - unpreserved B-5W-11-8-11 180-5679-H-4 Plastic 250ml - unpreserved B-5W-11-8-11 180-5679-I-4 180-5679-J-4 Voa Vial 40ml - Hydrochloric Acid B-5W-11-8-11 B-5W-11-8-11 180-5679-K-4 Voa Vial 40ml - Hydrochloric Acid Voa Vial 40ml - Hydrochloric Acid B-5W-11-8-11 180-5679-L-4 Amher Glass 1 liter - unpreserved B-4W-11-8-11 180-5679-A-5 180-5679-B-5 Amber Glass 1 liter - unpreserved B-4W-11-8-11 180-5679-C-5 Amber Glass 1 liter - Hydrochloric B-4W-11-8-11 Amber Glass 1 liter - Hydrochloric B-4W-11-8-11 180-5679-D-5 Plastic 500ml - with Nitric Acid B-4W-11-8-11 180-5679-E-5 B-4W-11-8-11 180-5679-F-5 Plastic 250ml - with Sodium

Page 1 of 2

4

6

8

40

11

Client Sample ID	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	<u>Lot #</u>
B-4W-11-8-11	180-5679-G-5	Plastic 250ml - with Sulfuric Acid	2		
B-4W-11-8-11	180-5679 - H-5	Plastic 250ml - unpreserved			·
B-4W-11-8-11	180-5679-I-5	Plastic 250ml - unpreserved			
B-4W-11-8-11	180-5679-J-5	Voa Vial 40ml - Hydrochloric Acid	<u>e</u>		
B-4W-11-8-11	180-5679-K-5	Voa Vial 40ml - Hydrochloric Acid			
B-4W-11-8-11	180-5679-L-5	Voa Vial 40ml - Hydrochloric Acid	4		

Temperature readings:

Login Container Summary Report

180-5712

Client Sample ID	Lab ID	Container Type	Container pH	Preservative Added (mls)	<u>Lot#</u>
B-2W-11-9-11	180-5712-A-1	Amber Glass 1 liter - unpreserved			
B-2W-11-9-11	180-5712-B-1	Amber Glass 1 liter - unpreserved			
B-2W-11-9-11	180-5712-C-1	Amber Glass 1 liter - Hydrochloric	_2		<u> </u>
B-2W-11-9-11	180-5712-D-1	Amber Glass 1 liter - Hydrochloric	7 7 7		
B-2W-11-9-11	180-5712-E-1	Plastic 500ml - with Nitric Acid	- 7		
B-2W-11-9-11	180-5712-F-1	Plastic 250ml - with Sodium	13		
B-2W-11-9-11	180-5712-G-1	Plastic 250ml - with Sulfuric Acid	-2		
B-2W-11-9-11	180-5712-H-1	Plastic 250ml - unpreserved			
B-2W-11-9-11	180-5712-I-1	Plastic 250ml - unpreserved			<u> </u>
B-2W-11-9-11	180-5712-J-1	Voa Vial 40ml - Hydrochloric Acid	•		
B-2W-11-9-11	180-5712-K-1	Voa Vial 40ml - Hydrochloric Acid		·	
B-2W-11-9-11	180-5712-L-1	Voa Vial 40ml - Hydrochloric Acid	<u> </u>		·
B-1W-11-9-11	180-5712-A-2	Amber Glass 1 liter - unpreserved			
B-1W-11-9-11	180-5712-B-2	Amber Glass 1 liter - unpreserved			
B-1W-11-9-11	180-5712-C-2	Amber Glass 1 liter - Hydrochloric	2		
B-1W-11-9-11	180-5712-D-2	Amber Glass 1 liter - Hydrochloric	3		
B-1W-11-9-11	180-5712-E-2	Plastic 500ml - with Nitric Acid	3		
B-1W-11-9-11	180-5712-F-2	Plastic 250ml - with Sodium	13		
B-1W-11-9-11	180-5712-G-2	Plastic 250ml - with Sulfuric Acid	3		

Plastic 250ml - unpreserved Plastic 250ml - unpreserved

Voa Vial 40ml - Hydrochloric Acid

Voa Vial 40ml - Hydrochloric Acid

Voa Vial 40ml - Hydrochloric Acid

180-5712-H-2

180-5712-I-2

180-5712**-**J-2

180-5712-K-2

180-5712-L-2

Page 1 of 1

B-1W-11-9-11

B-1W-11-9-11

B-1W-11-9-11

B-1W-11-9-11

B-1W-11-9-11

- 0

6

8

9

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

pH OF SOILS ASTM D 4972-01 (SOP- S36)

Client Client Reference

GAI CONSULTANTS

USS CLAIRTON C071418.13

Project No.

2011-532-01

Lab ID Boring No. Depth (ft) Sample No.		01 B-1 0-26.5 S-1,3,5,6	02 B-3 0-26.5 S-1,3,4,5,6	03 B-3 30-46.5 S-7,8,9,10	04 B-5 20.0-36.5 S-5,6,7,8	05 B-5 20.0-36.5 S-9,10,11	
Drying Tare No. Testing Tare No.		PH11 B	PH8 J	PH9 A	PH10 E	PH11 C	
Temperature (°C)		22	22	22	22	22	
pH of Sample	Test 1 Test 2	9.5 9.5	9.8 9.8	10.4 10.4	10.4 10.4	8.5 8.5	
Agreement (+/- 0.2 uni	its)	0.0	0.0	0.0	0.0	0.0	

Me	Meter Calibration										
Buffer pH	Meter Reading	Meter Model									
4.00 7.00 10.0	3.98 6.99 10.00	ORION 720A									

pH of Distilled Water (Acceptable range 6.5-7.5)	6.8

Tested By

KBL

Date

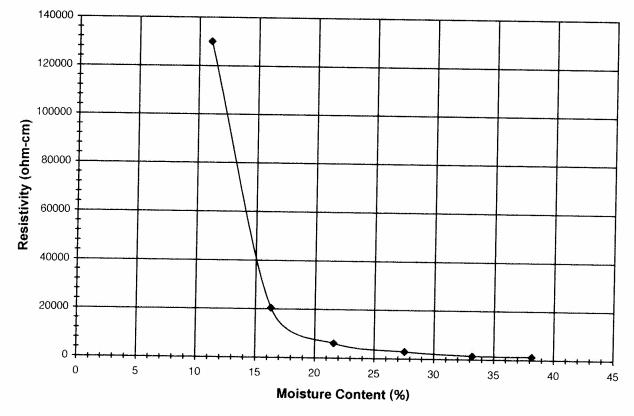
12/7/11 Checked By

MC

Date 12-8-1

page 1 of 1

DCN: CT-\$36 DATE 2/25/10 REVISION: 4

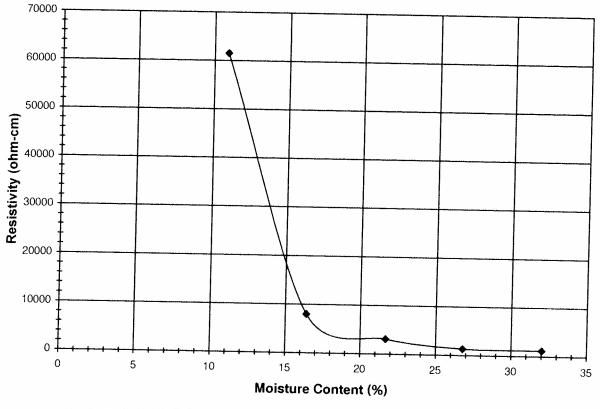

C::Users:GeojackiDocuments:PRINT Q (LOCAL):[G403.xis]Sheet1

AASHTO T288-01 (SOP - S56)

Moisture Content (%) Resistance (ohm) Resistivity (ohm-cm)		11.0 130000 130000	16.3 20500 20500	21.6 6150 6150	27.5 3000 3000	33.2 1500 1500	38.2 (Saturated) 1350 1350
Tare No. Tare & Wet Specimen Tare & Dry Specimen Tare Weight (gm)		52 39.65 36.68 9.79	63 37.10 33.33 10.22	35.46 30.88	61 33.67 27.97 7.28	43 40.71 33.02 9.86	44 47.42 36.55 8.08
Client Client Reference Project No. Lab ID	GAI CONSULT. USS CLAIRTOI 2011-532-01 2011-532-01-01	N C071418	3.13	Boring No. Depth (ft) Sample No. Visual Descr	iption	B-1 0-26.5 S-1,3,5,6 GRAY SAND (-#10 Sieve mat	erial)

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

Soil Class	Corrosion Resistance	Specific Resistivity (ohm-cm)
1	Excellent	10,000 - 6,000
2	Good	6,000 - 4,500
3	Fair	4,500 - 2,000
4	Bad	2,000 - 0


Tested By PC Date 12/2/11 Checked By VC Date 12-5-1

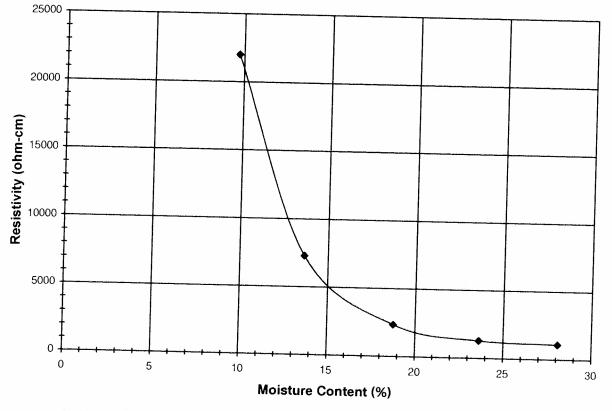
AASHTO T288-01 (SOP - S56)

Client Client Reference Project No. Lab ID	GAI CONSUUSS CLAIR 2011-532-01 2011-532-01	TON C07141	8.13	Boring No. Depth (ft) Sample No. Visual Descri	iption	B-3 0-26.5 S-1,3,4,5,6 GRAY SAN (-#10 Sieve r	D
Tare No. Tare & Wet Specimen Tare & Dry Specimen Tare Weight (gm)		38 35.14 32.37 6.99	64 37.33 33.44 9.71	60 37.75 32.31 7.22	47 46.36 38.60 9.62	30.66	
Moisture Content (% Resistance (ohm) Resistivity (ohm-cm)		10.9 61500 61500	16.4 8000 8000	21.7 3100 3100	26.8 1350 1350	32.0 1200 1200	(Saturated)

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

Soil Class	Corrosion Resistance	Specific Resistivity (ohm-cm)
1	Excellent	10,000 - 6,000
2	Good	6,000 - 4,500
3	Fair	4,500 - 2,000
4	Bad	2,000 - 0

Tested By PC Date 12/2/11 Checked By \(\text{Date Date 12-5-1} \)

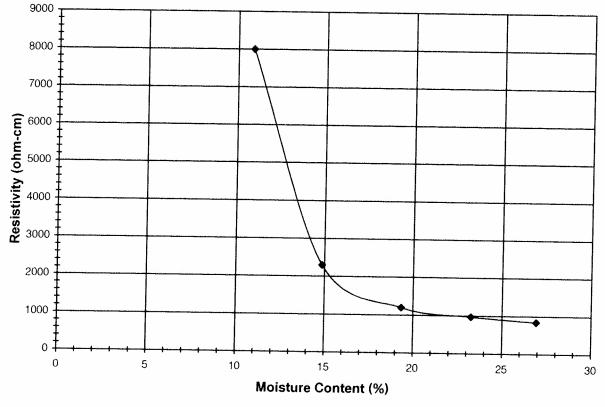

CT-S56 DATE: 4/29/04 REVISION: 1 C:\(\text{Users Georack Documents PRINT O II OCAL \$\text{USERS G

AASHTO T288-01 (SOP - S56)

Client Client Reference Project No. Lab ID	GAI CONSU USS CLAIR [*] 2011-532-01 2011-532-01	TON C07141	8.13	Boring No. Depth (ft) Sample No. Visual Descri	iption	B-3 30.0-46.5 S-7,8,9,10 GRAY SIL ⁻ (-#10 Sieve	
Tare No. Tare & Wet Specimen Tare & Dry Specimen Tare Weight (gm)	(gm) (gm)	38 30.91 28.79 7.00	47 32.77 29.99 9.63	60 29.27 25.79 7.23	64 40.07 34.27 9.72	40 37.52 30.85 7.10	
Moisture Content (% Resistance (ohm) Resistivity (ohm-cm)		9.7 22000 22000	13.7 7300 7300	18.8 2350 2350	23.6 1300 1300	28.1 1100 1100	(Saturated)

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

Soil Class	Corrosion Resistance	Specific Resistivity (ohm-cm)
1	Excellent	10,000 - 6,000
2	Good	6,000 - 4,500
3	Fair	4,500 - 2,000
4	Bad	2,000 - 0


Tested By KBL Date 12/7/11 Checked By C Date 12-8-1.

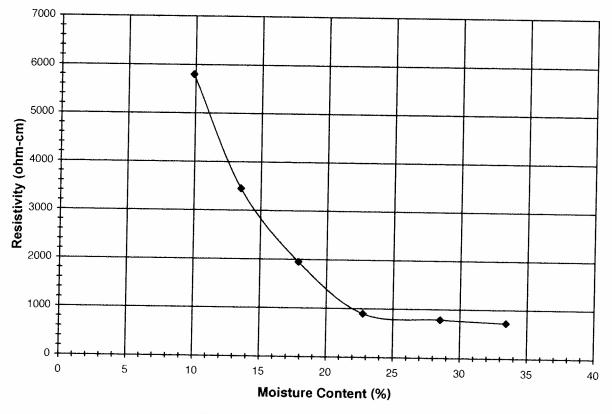
AASHTO T288-01 (SOP - S56)

Client Client Reference Project No. Lab ID	GAI CONSUL USS CLAIRTO 2011-532-01 2011-532-01-	ON C07141	8.13	Boring No. Depth (ft) Sample No. Visual Descr	ription	B-5 20.0-36.5 S-5,6,7,8 BROWN S. (- #10 Sieve i	
Tare No. Tare & Wet Specimer Tare & Dry Specimen Tare Weight (gm)		35 29.68 27.72 9.70	49 30.52 27.82 9.65	٥.	44 36.80 31.39 8.13	39.07	
Moisture Content (% Resistance (ohm) Resistivity (ohm-cm)		10.9 8000 8000	14.9 2300 2300	19.3 1200 1200	23.3 975 975	26.9 840 840	(Saturated)

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

Soil Class	Corrosion Resistance	Specific Resistivity (ohm-cm)
1	Excellent	10,000 - 6,000
2	Good	6,000 - 4,500
3	Fair	4,500 - 2,000
4	Bad	2,000 - 0

Tested By KBL Date 12/7/11 Checked By C Date 2-8-1


C1-S56 DATE 429:04 REVISION. 1 C:-Users Geojack: Documents PRINT G: (LOCAL)/G401.XLS/Sheet1

AASHTO T288-01 (SOP - S56)

Moisture Content (%) Resistance (ohm) Resistivity (ohm-cm)		9.9 5800 5800	13.5 3450 3450	17.9 1950 1950	22.7 900 900	28.5 790 790	33.4 730 730
Tare No. Tare & Wet Specimen Tare & Dry Specimen Tare Weight (gm)		52 29.91 28.10 9.78	63 31.64 29.09 10.20	62 31.80 28.49 9.97	65 31.23 27.30 10.02	54 31.32	48 33.48 27.62 10.09
Client Client Reference Project No. Lab ID	GAI CONSULT USS CLAIRTOI 2011-532-01 2011-532-01-05	N C0714	118.13	Boring No. Depth (ft) Sample No. Visual Desc		B-5 20.0-36.5 S-9,10,11 BROWN CI (-#10 Sieve r	

Note: The ratio of Miller Box area versus distance between electrodes is equal to 1.

Soil Class	Corrosion Resistance	Specific Resistivity (ohm-cm)
1	Excellent	10,000 - 6,000
2	Good	6,000 - 4,500
3	Fair	4,500 - 2,000
4	Bad	2,000 - 0

Tested By KBL Date 12/7/11 Checked By C Date 12-8-11

DCN: CT-S56 DATE: 4/29/04 REVISION: 4 C. Users:Geojack/Documents:PRINT O. (LOCAL) IG402.XLS/Sheet1

SIEVE ANALYSIS

ASTM D 422-63 (2007) SOP-S3

Client

Lab ID

Client Reference Project No.

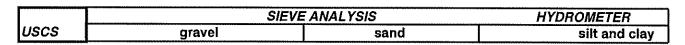
GAI CONSULTANTS

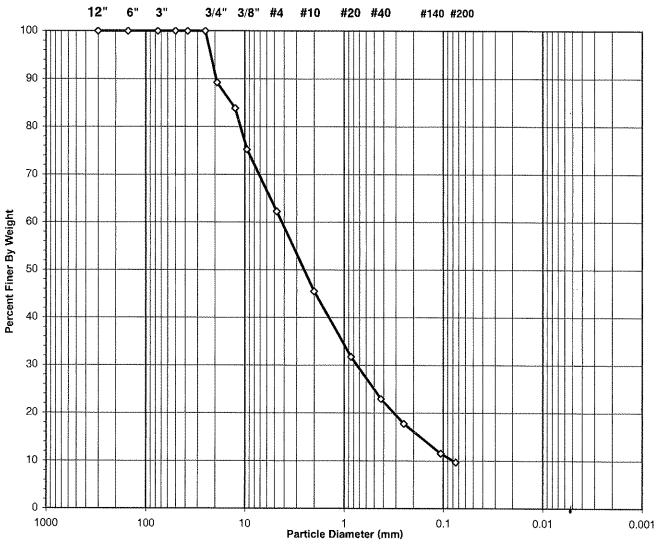
USS CLAIRTON C071418.13

2011-532-02

2011-532-02-01

Boring No.


Depth (ft)


Sample No. Soil Color

B-2

10.0-20.6

S-3,5 **GRAY**

USCS Symbol

sw-sm, ASSUMED

D60 =

4.23

CC =

1.64

USCS Classification WELL-GRADED SAND WITH SILT AND GRAVEL

D30 =0.74 CU = 53.15

BHK

Date

12/12/11 Checked By

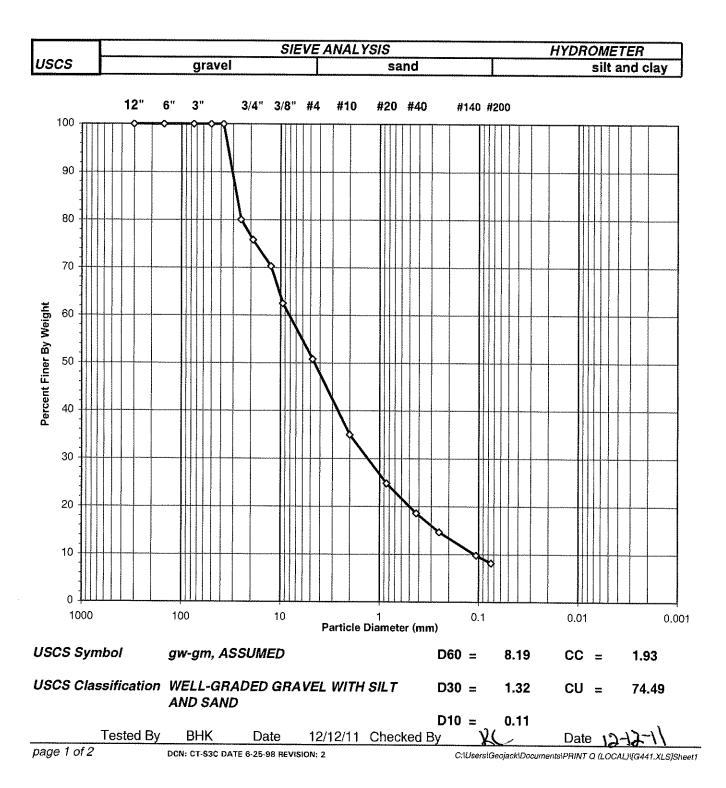
D10 = 0.08

page 1 of 2

DCN: CT-S3C DATE 6-25-98 REVISION: 2

Date C:\Users\Geojack\Documents\PRINT Q (LOCAL)\G442.xisjSheet1

SIEVE ANALYSIS


ASTM D 422-63 (2007) SOP-S3

Client Reference

GAI CONSULTANTS USS CLAIRTON C071418.13

Project No.
Lab ID

2011-532-02 2011-532-02-02 Boring No. Depth (ft) Sample No. Soil Color B-4 10.0-20.2 S-3,5 **GRAY**

SIEVE ANALYSIS

ASTM D 422-63 (2007) SOP-S3

Client

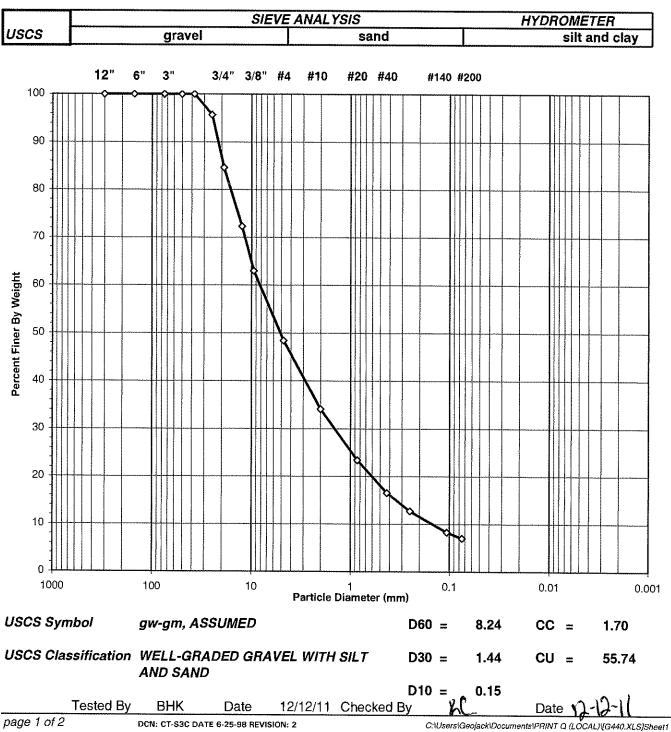
Client Reference Project No.

GAI CONSULTANTS

USS CLAIRTON C071418.13

2011-532-02

Lab ID 2011-532-02-03 Boring No.


Depth (ft) Sample No.

0-11.5 S-1,2,3

B-6

Soil Color

BROWN / GRAY

Clark Laboratories LLC

IH and Environmental Laboratories 1801 Route 51 South - Bldg 9 Jefferson Hills, PA 15025

FAX: 412-387-1028 PHONE: 412-387-1001

46932 Final Report Tracking Sheet:

http://www.clarklabsllc.com AIHA Lab ID: 100355

klichtenfels@geotechnics.net GAI Consultants (412) 823-7600 (412) 823-8999 Phone: Email: Fax: Loc: Kevin Lichtenfels James Moyer Customer Code: 1300 - 0001 Customer P.O.: Work Req By: Attention: East Pittsburgh, PA 15112 Geotechnics, Inc. (PA) 544 Bradock Avenue Geotechnics, Inc.

Date Rcvd: 12/08/11 Project Number: USS CLAIRTON C071418.13

Sampling Date: 12/07/11		
Client Sample Id: B-1 , 0-26.5' , S-1,3,5,6	Sampled Location: 2011-523-01-01	
000349132		
Sample Id:		

- Results	Total	150 mg/kg		400 mg/kg		4.5.6 Sampling Date: 12/07/11	
•	porting Limit	50 mg/kg		50 mg/kg	Comments: 400 ppm	8-3, 0-26.5', S-1,3,	2011-523-01-02
Analysis An.	Date Init. Reporting Limit	12/15/11 JAD	Comments:	12/15/11 JAD	Сопте	Client Sample Id: B-3, 0-26.5' , S-1,3,4,5,6	Sampled Location: 2011-523-01-02
	Method	Cal 422		Cal 417		000349133	
	Analyte	Chloride		Sulfate		Sample Id:	

Results	Total	85 mg/kg	460 mg/kg
	rting Limit	50 mg/kg	Comments: 85 ppm AD 50 mg/kg
Analysis An.	Date Init. Reporting Limit	12/15/11 JAD	Comments 12/15/11 JAD
	Method	Cal 422	Cal 417
	Analyte	Chloride	Sulfate

Comments: 460 ppm

Sampling Date: 12/07/11		
Client Sample Id: B-3 , 30.0-46.5', S-7,8,9,10	Sampled Location: 2011-523-01-03	
000349134		
Sample Id:		

Results	Fotal	
. An.	Init. Reporting Limit	
Analysis	Date	
	Method	The second secon
	Analy te	

Nonits	Total	200 mg/kg	370 mg/kg
Analysis An.	oorting Limit	50 mg/kg	its: 200 ppm 50 mg/kg
	Init. Rep	JAD	Comments JAD
	Date	12/15/11 JAD	Coi 12/15/11 JAD
	Method	Cal 422	Cal 417
	Analyte	Chloride	Sulfate

Comments: 370 ppm

Analyst: Date: 12/16/11

Jody Delbusso - General Chemistry

Rachelle Hergenroeder - Project Coordinator

Date: 12/19/11

Approved:

Time, flow rate, and/or sample volume data are based on client supplied information, unless otherwise noted. All analytical quality control results for this tracking sheet met laboratory QC guidelines unless stated otherwise above.

*** END OF REPORT ***

APPENDIX E SPECIFICATIONS FOR AUGERCAST PILES

1.0 AUGERCAST PILES – 18-INCH DIAMETER

This work consists of supplying the necessary labor, materials, tools, and equipment and properly installing the augercast piles as required by the Drawings and the Contract Specifications.

1.1 <u>Definitions</u>

- 1.1.1 An augercast pile shall consist of augering to rock using a continuous-flight, hollow-stem auger and filling the hole with grout as the auger is being withdrawn. Reinforcement shall be included as indicated on the drawings for lateral loads, to transmit the superstructure load to the pile, and/or for pile continuity.
- 1.1.2 Individual Pile Design Capacities:
 - 1.1.2.1 Compression 210 tons
 - 1.1.2.2 Tension 22 tons (with full length #10 grade 60 all-thread bar)
 - 1.1.2.3 Lateral 4 tons (with full length #10 grade 60 all-thread bar)
 - 1.1.2.4 Lateral 8 tons (with full length #10 grade 60 all-thread bar and 15-foot deep reinforcing cage consisting of 6 #8 grade 60 rebar with #4 ties at 12-inch centers)

1.2 Qualifications

Installation of the augercast piles shall be performed by a specialty contractor whose qualifications and experience in work of this type and scope, suitability or equipment, competent personnel and reputation shall be subject to the approval of the Owner or his designated representative. As a minimum, the contractor shall submit evidence of successful completion of at least five augercast pile installations and testing comparable in scope of this project. The onsite construction superintendent and pile installation rig operator shall also meet this requirement.

1.3 Standards

All work performed under this section shall conform to generally accepted engineering and construction practices. Testing procedures specified herein shall be the current applicable standards.

Installation

- 1.3.1 The hollow stem auger used to install these piles shall be a continuous shaft with the minimum length needed to penetrate ten feet below the lowest anticipated top of rock elevation. The entire augered hole shall be a minimum of 18 inches in diameter. Advance the auger with a temporary plug at the tip at a continuous rate that prevents removal of excessive soil. The installation of these piles shall be conducted in such a manner as to not destabilize nearby foundations, or structures or damage underground utilities identified on the Drawings. The hole shall be augered to the elevation of the top rock and then until auger refusal (less than 1 foot of penetration per minute) is achieved with a drill rig delivering greater than 20,000 foot-pounds of torque with full weight of tools.
- 1.3.2 The augered hole shall be filled to the top of pile elevation as shown on the Contract Drawings through the hollow-stem with grout pumped with a positive pressure. The pump shall have the capability of delivering at least 300 psi pressure at the gage. The pressure gauge shall be accurate to a precision of ± 10% of the pressure being measured. The grout pump shall be a positive displacement pump, shall have a method of determining the volume of grout being pumped, and shall be calibrated. Positive pressure shall always be maintained by pumping grout while the augers are being withdrawn.
- 1.3.3 The rate of withdrawal of the augers shall be such that the volume of the augered hole below the auger tip shall always be equal to or less than the amount of grout below the auger tip. The rate of pumping of grout into the hole shall always exceed the rate of volume increase of the hole as the auger is withdrawn. The minimum volume of grout placed in the augered hole shall be at least 115 percent of the volume of the augered hole.
- 1.3.4 The steel reinforcing bars shall be installed as shown on the Drawings. The top of the bar shall be centered in the top of the pile immediately after placement of the bar. Any connections required

to join lengths of bars within the pile shall be made in the lower half of the pile with connections which will develop the full tensile strength of the bar. Connection details shall permit proper construction of the piles and shall be subject to the approval of the Owner's Representative. Use suitable centralizers to assure alignment.

- 1.3.5 Piles shall not be installed closer than 9 feet on centers from existing piles until the grout in the existing piles has reached its initial set (minimum 10 hours), so that there will not be interconnection between adjacent piles while the mortar is in a fluid state.
- 1.3.6 Piles shall be constructed to the correct top elevation as shown on the Drawings. Depending on the elevation of the ground surface at the time of construction, this may require proper removal of excess grout from auger holes or sleeves to extend the pile tops above the surrounding ground.
- 1.3.7 If near surface obstructions are encountered in fill that cannot be penetrated by the auger, the pile shall either be relocated or the obstruction shall be exposed and removed as directed by the Owner's Representative. The cost of removing obstructions by excavating is not included in the unit price for piling.
- 1.3.8 If directed by the Owner's Representative, obstructions including remaining reinforced concrete foundations or steel shall be penetrated by pre-drilling. The cost of pre-drilling through obstructions shall be paid according to the unit price for "drilling of obstructions."
- 1.3.9 The installation equipment shall be equipped with an automatic pile installation recorder to provide continuous records of the grouting installation rates and pressures and the auger withdrawal rates. This equipment shall be used to provide a continuous record of each pile installed and to detect anomalies in the piles before the grout has set.
- 1.3.10 The piling shall be constructed under continuous observation of the Contractor and the Owner's Representative. If a defect in pile continuity is detected during grout placement, the augers shall be lowered sufficiently to restore continuity and the grout injection process continued to completion.

1.4 Materials

1.4.1 Grout

- a. The grout for the augercast piles shall be proportioned to obtain an unconfined compressive strength of at least 5000 psi at 28 days cure when tested according to ASTM Test Designation C-109. Prior to the start of construction, the Contractor shall submit the results of the batch tests of the grout design mix to the Owner's Representative. The results shall include the mix components and proportions, the flow cone requirements, and the 7-, 14-, and 28-day strengths. The Contractor shall perform all grout design testing.
- b. The Portland cement for the grout shall meet the requirements of ASTM C-150, Type II.
- c. Water shall be fresh, clean, and potable.
- d. Fine aggregate shall hard, durable, chemically inert natural sand containing no deleterious materials that meets the requirements of PennDOT Type A concrete sand.
- e. The fluidifier shall increase the flowability of the mixture, disperse cement grains, neutralize grout shrinkage, hold solids in suspension, increase pumpability of the grout, reduce bleeding, reduce the water requirements, thereby increasing the compressive strength by 20% minimum.
- f. The Owner's Representative shall prepare and test at least eight 2-inch by 2-inch cubes for each 50 cubic yards of grout and at least once for each day's production. Two samples shall be tested by the Owner's Representative at 7- days cure, 2 at 14-days, 2 at 28- days and 2 for spares.
- g. The flow cone measurement for every truck or batch of grout shall be measured at the site in accordance to with the COE Test Designation CRD C79 with a ¾ inch opening. The flow cone values shall be consistent with the requirements of the design mix. No water shall be added to the mix after the flow cone test has been taken. In addition, the final water-cement ratio shall not exceed that of the design mix.

- h. The temperature of the grout shall not exceed 90° F at the time of placement. Provide cold weather protection and curing of the completed piling in accordance with ACI requirements, when necessary.
- i. Each truck ticket shall be submitted to the Owner's Representative prior to placement.
- 1.4.2 The reinforcing steel for cages shall conform to ASTM Specification A-615 Grade 60, unless otherwise indicated on the Drawings. All piles shall have a central full-length #10 grade 60 all-thread rebar meeting the requirements of ASTM A-615. The top connection details for all piles shall be as shown on the drawings. Threaded couplers designed by the manufacturer to transmit the full strength of the bar shall be used, if needed for the all-thread bars. All reinforcing in the augercast piles shall be epoxy coated in accordance with ASTM A-775.

1.5 Tolerance

The augercast piles shall be installed within 3 inches of plan position. Variation from plumb or specified batter angle shall not exceed 2 percent. Top of pile elevation shall be within one inch of that shown on the Drawings.

1.6 Records

A complete an accurate record of all augercast piles shall be maintained by the Contractor. The record shall reference number, dates, of activities, diameter, length, elevation of tip, incremental and total volume of grout, grouting pressures, samples prepared and results of all grout tests. The contractor shall supply copies to the owner's representative of the electronic data records of each pile installed.

1.7 Pile Load Tests, Where Indicated on Drawings

- 1.7.1 All pile static load tests shall be conducted to test loads equal to at least twice the design loads.
- 1.7.2 The piles used for the testing shall be non-production piles.
- 1.7.3 The contractor shall provide sketches of the proposed test setups and the recent calibrations of the hydraulic rams and load cells for

Page 5 of 7

- acceptance by the owner's representative at least two weeks prior to installing the test setups.
- 1.7.4 Compression test setups and procedures shall be in accordance with ASTM D-1143. The Contractor shall provide a calibrated load cell and a calibrated hydraulic ram for measuring loads. The lower measured load of the two methods shall govern the test. The contractor shall provide the dial gages to measure pile movements. The Owners representative shall direct the loading procedure, record the movement data and interpret the test results.
- 1.7.5 The compression test shall be conducted according to paragraph 5.6 (quick load test method) and paragraph 5.2 (cyclic loading) of ASTM D-1143. Hold the 200 percent test load for at least 60 minutes, and until the creep rate is 0.01 inches per hour or less. The test pile shall not settle more than 1.0 inch under the 200 percent test load.
- 1.7.6 Tension tests shall be conducted according to paragraph 7.7 using the cyclic option in paragraph 7.3 of ASTM D-3689 to 200 % of the design load. The maximum test load shall be held for a minimum of 15 minutes. The test pile shall not move upward more that ½ inch under the maximum test load.
- 1.7.7 Lateral load tests shall be conducted according to paragraph 6.3 of ASTM-D3966, the cyclic loading procedure. The lateral deflection under the 200% test load shall not exceed 3/4 inch. After completing the loading cycle under paragraph 6.3, conduct a lateral load test of 300% of the design load according to Paragraph 6.2, loading in excess of the standard test load.
- 1.7.8 The production piles shall be installed to the same injection pressures and resistance criteria as the successful test piles.
- 1.8 Owner's Representative Responsibilities
 - 1.8.1 The Owner's representative shall be responsible for quality assurance of the piling installation including:
 - 1.8.1.1 Observing that all piles are installed to auger refusal on or in rock,
 - 1.8.1.2 Full-time observation of the piling construction process to determine if pile continuity is being achieved,

- 1.8.1.3 Performing grout slump tests, preparing test specimens, and conducting strength tests of grout,
- 1.8.1.4 Providing technical guidance for the pile load tests, interpretation of the load test results, and preparation of the load test reports,
- 1.8.1.5 Reviewing the contractors grout design test results, electronic data recording records, and submittals, and
- 1.8.1.6 Preparation of records of construction.
- 1.8.2 The presence of the owner's representative shall not relieve the contractor of the responsibility to install all piles correctly and in accordance with the contract requirements.

1.9 Payment

- 1.9.1 The cost of mobilization and demobilization including grout design testing and reporting shall be a Lump Sum.
- 1.9.2 The cost of each satisfactory 18-inch diameter augercast pile shall include the materials, equipment and labor necessary to auger pile holes, pump holes with grout to the top elevation, place reinforcement, and reports of construction records. Piles will be compensated at the unit price per lineal foot below top elevation including reinforcement.
- 1.9.3 The cost of predrilling through reinforced concrete, steel, or other obstructions in the fill shall include the materials, equipment and labor necessary to advance and maintain an open hole through the obstructions for the cumulative length of the obstructions at each pile. Drilling of obstructions shall be compensated at the unit price per lineal foot for the cumulative length of obstructions, exclusive of the lengths of drilling above and between obstructions. Drilling above and below obstructions are included in the unit price of augercast piles.
- 1.9.4 The cost of each load test shall include the materials, equipment, calibrations, and labor necessary to set up and conduct the load tests. Load tests shall be compensated at a Lump Sum per test, for each test type.

END OF SPECIFICATION

Page 7 of 7

APPENDIX F DRILLED SHAFT FOUNDATION AT WALL

Barry Newman

From:

Kaiser, Tim [TKaiser@hatch.ca]

Sent:

Monday, December 12, 2011 1:56 PM

To:

Barry Newman

Cc: Subject: Client - US Steel - Bencho, John; Bob Bruhn RE: USS Clairton Quench Tower piping plan

Attachments:

Pipe Support Concept.pdf

Hi Barry

After reviewing the pipe routing with USS some concerns were identified. On one side of the pipe supports is the coke track and on the other side of the support is the breeze truck road. The breeze truck road can not be closed for more than 3 to 4 hours at a time. Also the track is very close to the foundation. USS will isolate as much of the track as possible to allow us to work but there is at least one of the supports that will restrict them to the point where they will have to be constantly moving a single car in and out from under the screening station. This will drastically impede production. Our challenge is to identify a foundation system where we can install the foundation while keeping closures to only a few hours and where the trucks will not adversely affect the concrete while it cures.

My thought on this is to core or demo the existing retaining wall only to the extent necessary and install a drill concrete pier. If you have any other ideas, please let me know what they may be. Other than that can you please let me know the size of the drilled pier I will need and how deep I will need to go with it to resist the applied loads.

I have attached a sketch to show the support concept and the applied loads. The 2 load cases on the sketch are unfactored loads and includes gravity, thermal and wind.

I need to pass these foundations onto my contractors Thursday morning so that they can estimate the construction cost for me. I know you have other things going on but if you could turn this around quickly it would be greatly appreciated.

You should also include this in the geotech report.

If you have any questions, please don't hesitate to call. My number is 412-497-2145.

Thanks

Tim Kaiser

		C	TM
	A SS		

JOB NO.

SHEET _____ OF ____

DESIGNED BY _____ DATE ____

CHECKED BY______DATE ____

REQUIRED TO INSTALL

NEW FON.

€ POST 943" ETRACK CASE 1.1 P. 3700 165 , H=584/6s M=8850 A./hs. C=15,2' CASE 2! P = 2700 165 H = 402 165 M=9800 fr. 165 E=24.4 EL. 761 '-0" EL. 758'-0" ROAD B/EX, RETAINING DEMOLISH ONLY AS MUCH WALL AS